參考文獻 |
1. Pandey, R. S., Liou, Y.-A., & Liu, J.-C. (2021). Season-dependent variability and influential environmental factors of super-typhoons in the Northwest Pacific basin during 2013–2017. Weather and Climate Extremes, 31, 100307.
2. Chan, P. W., Choy, C. W., He, J. Y., & Li, Q. S. (2022). An observational study of Super Typhoon Rai, a very late‐season typhoon necessitating the issuance of a tropical cyclone warning signal for Hong Kong in December 2021. Weather, 77(12), 433-438.
3. Emanuel, K. (2018). 100 years of progress in tropical cyclone research. Meteorological Monographs, 59, 15-1.
4. Landsea, C. W., & Cangialosi, J. P. (2018). Have we reached the limits of predictability for tropical cyclone track forecasting?. Bulletin of the American Meteorological Society, 99(11), 2237-2243.
5. Cangialosi, J. P., Blake, E., DeMaria, M., Penny, A., Latto, A., Rappaport, E., & Tallapragada, V. (2020). Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Weather and Forecasting, 35(5), 1913-1922.
6. Kimberlain, T. B., & Breman, M. J. (2017). Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, 63-125.
7. Hung, C. W., Shih, M. F., & Lin, T. Y. (2020). The climatological analysis of typhoon tracks, steering flow, and the pacific subtropical high in the vicinity of Taiwan and the Western North Pacific. Atmosphere, 11(5), 543.
8. Fujiwhara, S. (1921). The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quarterly Journal of the Royal Meteorological Society, 47(200), 287-292.
9. Fujiwhara, S. (1923). On the growth and decay of vortical systems. Quarterly Journal of the Royal Meteorological Society, 49(206), 75-104.
10. Fujiwhara, S. (1931). Short note on the behavior of two vortices. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 13(3), 106-110.
11. Prieto, R., McNoldy, B. D., Fulton, S. R., & Schubert, W. H. (2003). A classification of binary tropical cyclone–like vortex interactions. Monthly weather review, 131(11), 2656-2666.
12. Brand, S. (1970). Interaction of binary tropical cyclones of the western North Pacific Ocean. Journal of Applied Meteorology and Climatology, 9(3), 433-441.
13. Liou, Y. A., Liu, J. C., Wu, M. X., Lee, Y. J., Cheng, C. H., Kuei, C. P., & Hong, R. M. (2016). Generalized empirical formulas of threshold distance to characterize cyclone–cyclone interactions. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3502-3512.
14. Dong, K., & Neumann, C. J. (1983). On the relative motion of binary tropical cyclones. Monthly weather review, 111(5), 945-953.
15. Liou, Y. A., & Pandey, R. S. (2020). Interactions between typhoons Parma and Melor (2009) in North West Pacific Ocean. Weather and Climate Extremes, 29, 100272.
16. Rogers, R. F. (2021). Recent advances in our understanding of tropical cyclone intensity change processes from airborne observations. Atmosphere, 12(5), 650.
17. Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700.
18. DeMaria, M. (1996). The effect of vertical shear on tropical cyclone intensity change. Journal of Atmospheric Sciences, 53(14), 2076-2088.
19. DeMaria, M., & Kaplan, J. (1994a). A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather and Forecasting, 9(2), 209-220.
20. Frank, W. M., & Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly weather review, 129(9), 2249-2269.
21. Kaplan, J., & DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and forecasting, 18(6), 1093-1108.
22. Zeng, Z., Wang, Y., & Wu, C. C. (2007). Environmental dynamical control of tropical cyclone intensity—An observational study. Monthly Weather Review, 135(1), 38-59.
23. Hendricks, E. A., Peng, M. S., Fu, B., & Li, T. (2010). Quantifying environmental control on tropical cyclone intensity change. Monthly Weather Review, 138(8), 3243-3271.
24. Tang, B., & Emanuel, K. (2010). Midlevel ventilation’s constraint on tropical cyclone intensity. Journal of the Atmospheric Sciences, 67(6), 1817-1830.
25. Tang, B., & Emanuel, K. (2012). Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. Journal of the Atmospheric Sciences, 69(8), 2394-2413.
26. Lee, Y. S., Liou, Y. A., Liu, J. C., Chiang, C. T., & Yeh, K. D. (2017). Formation of winter supertyphoons Haiyan (2013) and Hagupit (2014) through interactions with cold fronts as observed by multifunctional transport satellite. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3800-3809.
27. Liou, Y. A., Liu, J. C., Liu, C. P., & Liu, C. C. (2018). Season-dependent distributions and profiles of seven super-typhoons (2014) in the Northwestern Pacific Ocean from satellite cloud images. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2949-2957.
28. Mei, W., Xie, S. P., Primeau, F., McWilliams, J. C., & Pasquero, C. (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science advances, 1(4), e1500014.
29. Leipper, D. F., & Volgenau, D. (1972). Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr, 2(3), 218-224.
30. Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366-1383.
31. Mainelli, M., DeMaria, M., Shay, L. K., & Goni, G. (2008). Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting, 23(1), 3-16.
32. Park, M. S., Elsberry, R. L., & Harr, P. A. (2012). Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Tropical Cyclone Research and Review, 1(4), 448-457.
33. Goni, G., DeMaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., ... & Halliwell, G. (2009). Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22(3), 190-197.
34. Price, J. F. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?. Ocean Science, 5(3), 351-368.
35. Schade, L. R., & Emanuel, K. A. (1999). The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. Journal of the atmospheric sciences, 56(4), 642-651.
36. Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the atmospheric sciences, 61(7), 843-858.
37. D′Asaro, E. A., Black, P. G., Centurioni, L. R., Chang, Y. T., Chen, S. S., Foster, R. C., ... & Wu, C. C. (2014). Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9), 1405-1418.
38. Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., & Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1616-1630.
39. Lin, I. I., Wu, C. C., Pun, I. F., & Ko, D. S. (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Monthly Weather Review, 136(9), 3288-3306.
40. Lee, C. Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2016). Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature communications, 7(1), 10625.
41. Shu, S., Ming, J., & Chi, P. (2012). Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Weather and forecasting, 27(2), 411-423.
42. Fudeyasu, H., Ito, K., & Miyamoto, Y. (2018). Characteristics of tropical cyclone rapid intensification over the western North Pacific. Journal of Climate, 31(21), 8917-8930.
43. Chu, J. H., Sampson, C. R., Levine, E. S., & Fukada, E. (2002). The Joint Typhoon Warning Center tropical cyclone best tracks 1945–2000 (Report). Joint Typhoon Warning Center.
44. Carrasco, C. A., Landsea, C. W., & Lin, Y. L. (2014). The influence of tropical cyclone size on its intensification. Weather and Forecasting, 29(3), 582-590.
45. Dvorak, V. F. (1975). Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly Weather Review, 103(5), 420-430.
46. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., ... & Thépaut, J. N. (2023). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], 10.
47. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Global Ocean Physics Analysis and Forecast [Data set]. https://doi.org/10.48670/moi-00016
48. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Global Ocean Physics Reanalysis [Data set]. https://doi.org/10.48670/moi-00021
49. Bolton, D. (1980). The computation of equivalent potential temperature. Monthly weather review, 108(7), 1046-1053.
50. Davies-Jones, R. (2008). An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Monthly Weather Review, 136(7), 2764-2785.
51. Sansom, P. G., & Catto, J. L. (2022). Improved objective identification of meteorological fronts: a case study with ERA-Interim. Geoscientific Model Development Discussions, 1-19.
52. DeMaria, M., & Kaplan, J. (1994b). Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. Journal of climate, 7(9), 1324-1334.
53. Weather Home, Kochi University (n.d). GMS/GOES9/MTSAT Data Archive for Research and Education. Retrieved from http://weather.is.kochi-u.ac.jp/archive-e.html
54. Meteorological Satellite Center of JMA. (n.d.). Himawari-8/9 Imager (AHI). Retrieved from https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html.
55. Rios-Berrios, R., & Torn, R. D. (2017). Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Monthly Weather Review, 145(5), 1717-1738.
56. Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci, 45(7), 1143-1155.
57. Lin, I. I., Rogers, R. F., Huang, H. C., Liao, Y. C., Herndon, D., Yu, J. Y., ... & Lien, C. C. (2021). A tale of two rapidly intensifying supertyphoons: Hagibis (2019) and Haiyan (2013). Bulletin of the American Meteorological Society, 102(9), E1645-E1664.
58. National Oceanic and Atmospheric Administration Physical Sciences Laboratory. (2023). Multivariate ENSO Index Version 2 (MEI.v2). Retrieved from https://psl.noaa.gov/enso/mei/
59. Picaut, J., Ioualalen, M., Menkès, C., Delcroix, T., & Mcphaden, M. J. (1996). Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274(5292), 1486-1489.
60. Sitkowski, M., Kossin, J. P., & Rozoff, C. M. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Monthly Weather Review, 139(12), 3829-3847.
61. Shimada, U., Owada, H., Yamaguchi, M., Iriguchi, T., Sawada, M., Aonashi, K., ... & Musgrave, K. D. (2018). Further improvements to the Statistical Hurricane Intensity Prediction Scheme using tropical cyclone rainfall and structural features. Weather and Forecasting, 33(6), 1587-1603.
62. Tierra, M. C. M., & Bagtasa, G. (2023). Identifying the rapid intensification of tropical cyclones using the Himawari‐8 satellite and their impacts in the Philippines. International Journal of Climatology, 43(1), 1-16.
63. DeMaria, M., & Kaplan, J. (1999). An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather and Forecasting, 14(3), 326-337. |