參考文獻 |
Argo Science Team (1998). On the design and implementation of argo - a global array of profiling floats. International CLIVAR Project Office. (1998).
Balaguru, K., Patricola, C. M., Hagos, S. M., Leung, L. R., & Dong, L. (2020). Enhanced predictability of eastern North Pacific tropical cyclone activity using the ENSO Longitude Index. Geophysical Research Letters, 47, https://doi.org/ 10.1029/2020GL088849
Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347.
Bao, J.-W. , J.M. Wilczak, J.M., Choi, J.-K., L.H. Kantha, L.H., Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development, Mon. Wea. Rev., 128 (2000), pp. 2190-2210
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A. J., & Xiao, Q. N. (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Monthly Weather Review, 132(4), 897–914. https://doi.org/10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2
Barker, D. M., Huang, X. Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., et al. (2012). The weather research and forecasting model′s community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society, 93(6), 831–843. https://doi.org/10.1175/BAMS-D-11-00167.1
Beardsley, R. C., Limeburner, R., Yu, H., and Cannon, G. A. (1985). Discharge of the Changjiang (Yangtze river) into the East China sea. Cont. Shelf Res. 4, 57–76. doi: 10.1016/0278-4343(85)90022-6
Belcher, S., Grant, A., Hanley, K., Fox-Kemper, B., Van Roekel, L., Sullivan, P., and Polton, J.: A global perspective on Langmuir turbulence in the ocean surface boundary layer, Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932, 2012.
Bender, M. A., I. Ginis and Y. Kurihara, 1993. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res. 98: 23 245–23 262.
Betts, A. K. (1982). Saturation point analysis of moist convective overturning. Journal of the Atmospheric Sciences, 39(7), 1484-1505.
Biswas, M.; Bernardet, L.; Dudhia, J. Sensitivity of hurricane forecasts to cumulus parameterizations in the Hurricane Weather Research and Forecasting (HWRF) model. Geophys. Res. Lett. 2014, 41.
Booij, N., Ris, M., R.C., Holthuijsen, R.C., L.H., A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res. Oceans, 104 (C4) (1999), pp. 7649-7666
Brainerd, K.E., Gregg, M.C., Surface mixed and mixing layer depths, Deep-Sea Res., 42 (9) (1995), pp. 1521-1543
Brand, S., 1971: The effects on a tropical cyclone of cooler surface, waters due to upwelling and mixing produced by a prior, tropical cyclone. J. Appl. Meteor., 10, 865–874.
Brasseur, P., Verron, J. The SEEK filter method for data assimilation in oceanography: a synthesis. Ocean Dynamics 56, 650–661 (2006). https://doi.org/10.1007/s10236-006-0080-3
Bryan, G. H. (2012). Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 140(4), 1125-1143, DOI: 10.1175/MWR-D-11-00231.1
Byun, D.-S., Kim, Y. W., Lee, J. Y., Lee, E. I., Park, K.-A., and Woo, H.-J. (2018). Converting Ieodo Ocean Research Station wind speed observations to reference height data for real-time operational use. J. Korean Soc. Oceanogr. 23, 153–178.
Byun D-S, Jeong J-Y, Kim D-J, Hong S, Lee K-T and Lee K (2021) Ocean and Atmospheric Observations at the Remote Ieodo Ocean Research Station in the Northern East China Sea. Front. Mar. Sci. 8:618500. doi: 10.3389/fmars.2021.618500
Chandrasekar, R., Balaji, C., Sensitivity of tropical cyclone Jal simulations to physics parameterizations, J. Ear. Syst. Sci., 121 (4) (2012), pp. 923-946
Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. Journal of Atmospheric Sciences, 21(1), 68-75.
Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, … , R. Bleck (2007). The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system, Journal of Marine Systems , 65(2007) 60-83
Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585.
Chu, J-H. , C. R. Sampson , A. S. Levine , and E. Fukada , 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000. U.S. Naval Research Laboratory Rep. NRL/MR/7540-02-16, 22 pp
Cione, J. J. and Uhlhorn, E. W. (2003). Sea Surface Temperature Variability in Hurricanes: Implications with Respect to Intensity Change, Monthly Weather Review, 131(8), 1783-1796, DOI: 10.1175/1520-0493(2003)131<1783:SSTVIH>2.0.CO;2
Cummings, J.A. Operational Multivariate Ocean Data Assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604.
Cummings, J.A.; Smedstad, O.M. Variational Data Assimilation for the Global Ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343.
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D. (2009). Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773–2792. doi: 10.1175/2008JCLI2592.1
de Boyer Montégut, C., Mignot, J., Lazar, A., and Cravatte, S. (2007). Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res. 112:C06011. doi: 10.1029/2006JC003953
deBoyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone (2004), Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.
Defant, A. “Physical Oceanography,” Pergamon Press, Oxford, 1961.
Durden, S. L. (2013). Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Monthly weather review, 141(12), 4256-4268.
Durski S, Glenn SM, Haidvogel DB (2004) Vertical mixing schemes in the coastal ocean: comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. J Geophys Res Oceans 109:C01015.
Dzwonkowski, B. et al. Compounding impact of severe weather events fuels marine heatwave in the coastal ocean. Nat. Commun. 11, 4623 (2020).
Emanuel, K. (1986). An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance, Journal of the Atmospheric Sciences, 43(6), 585-605, DOI: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Emanuel, K. (1995). The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. Journal of the Atmospheric Sciences, 52(22), 3960–3968, DOI: 10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2
Emanuel, K. (2016), Zhang, F.. On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification, Journal of the Atmospheric Sciences, 3739-3747, DOI: https://doi.org/10.1175/JAS-D-16-0100.1
Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci, 45(7), 1143-1155.
Emanuel, K. A. (1999). Thermodynamic control of hurricane intensity. Nature, 401(6754), 665-669.
Emanuel, K., Bister, M., and Rotunno, R. (1999). On the Mechanisms of Genesis of Tropical Cyclones, Journal of the Atmospheric Sciences, 56(3), 479-497, DOI: 10.1175/1520-0469(1999)056<0479:OTMOGO>2.0.CO;2
Emanuel, K., Desautels, C., Holloway, C., … Korty, R. (2004). Environmental Control of Tropical Cyclone Intensity, Journal of the Atmospheric Sciences, 61(7), 843-858, DOI: 10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
Foltz, G. R. and Mcphaden, M. J. (2009). Impact of Barrier Layer Thickness on SST in the Central Tropical North Atlantic, Journal of Climate, 22(2), 285-299, DOI: 10.1175/2008JCLI2308.1
Gallacher, P. C., R. Rotunno, and K. A. Emanuel, 1989: Tropical cyclogenesis in a coupled ocean–atmosphere model. Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 121–122.
Galperin, B. , L.H. Kantha, L.H., S. Hassid, S., A. Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows, Journal of Atmospheric Sciences, 45 (1988), pp. 55-62
Gentemann, C.L., Meissner, T., Wentz, F.J., Accuracy of satellite sea surface temperatures at 7 and 11 GHz, IEEE Trans. Geosci. Remote Sens., 48 (2010), pp. 1009-1018, 10.1109/TGRS.2009.2030322
Gentry, M.S., Lackmann, G.M., Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution, Mon. Weather Rev., 138 (2010), pp. 688-704
Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms, Mon. Wea. Rev., 96, 669–700
Ha, K. J., Nam, S., Jeong, J. Y., Moon, I. J., Lee, M., Yun, J., Jang, C. J., Kim, Y. S., Byun, D. S., Heo, K. Y., & Shim, J. S. (2019). Observations utilizing Korea ocean research stations and their applications for process studies. Bulletin of the American Meteorological Society, 100(10), 2061-2075. https://doi.org/10.1175/BAMS-D-18-0305.1
Hawkins, H. F., & Imbembo, S. M. (1976). The structure of a small, intense hurricane—Inez 1966. Monthly weather review, 104(4), 418-442.
Hernández G, Vaquero C, González P, Subira C, Frutos-Vivar F, Rialp G, Laborda C, Colinas L, Cuena R, Fernández R. Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients: A Randomized Clinical Trial. JAMA. 2016 Apr 5;315(13):1354-61. doi: 10.1001/jama.2016.2711. PMID: 26975498.
Hill, K.A., Lackmann, G.M., Influence of environmental humidity on tropical cyclone size, Mon. Wea. Rev., 137 (10) (2009), pp. 3294-3315, 10.1175/2009MWR2679.1
Holland, G. J. (1997). The Maximum Potential Intensity of Tropical Cyclones, Journal of the Atmospheric Sciences, 54, 2519–2541, DOI: https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
Hong J-S, Moon J-H, Kim T, You SH, Byun K-Y and Eom H (2022) Role of Salinity-Induced Barrier Layer in Air-Sea Interaction During the Intensification of a Typhoon. Front. Mar. Sci. 9:844003. doi: 10.3389/fmars.2022.844003
Hong, S.Y., Lim, J.O.J., The wrf single-moment 6-class microphysics scheme (wsm6), Asia-Pac. J. Atmos. Sci., 42 (2006), pp. 129-151
Iacono, M., Delamere, J., Mlawer, E., Shephard, M., Clough, S., Collins, D., Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res. Atmos., 113 (2008), p. D13, 10.1029/2008JD009944
Jacob, R., Larson, J., and Ong, E.: MxN Communication and Parallel Interpolation in CCSM3 Using the Model Coupling Toolkit, Int. J. High Perf. Comp. App., 19, 293–307, https://doi.org/10.1177/1094342005056116, 2005.
Jin, FF., Boucharel, J. & Lin, II. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516, 82–85 (2014). https://doi.org/10.1038/nature13958
Jordan, C., Charles, C., & Cleary, A. (2017). Enhancing the Impact of Research: Experimenting with Network Leadership Strategies to Grow a Vibrant Nature-Based Learning Research Network. Interdisciplinary Journal of Partnership Studies, 4(3). https://doi.org/10.24926/ijps.v4i3.175
Julian T. Heming, Fernando Prates, Morris A. Bender, …, Yi Xiao, Review of Recent Progress in Tropical Cyclone Track Forecasting and Expression of Uncertainties, Tropical Cyclone Research and Review, 8(4), 2019, 181-218, https://doi.org/10.1016/j.tcrr.2020.01.001.
Kilic, C. and Raible, C.C. (2013) Investigating the Sensitivity of Hurricane Intensity and Trajectory to Sea Surface Temperatures Using the Regional Model WRF. MeteorologischeZeitschrift,22,685-698.http://dx.doi.org/10.1127/0941-948/2013/0472
Killick R., Fearnhead P., Eckley I.A., Optimal detection of changepoints with a linear computational cost, J. Amer. Statist. Assoc., 107 (500) (2012), pp. 1590-1598, 10.1080/01621459.2012.737745
Kim, Y. S., Jang, C. J., Noh, J. H., Kim, K., Kwon, J., Min, Y., et al. (2019). A Yellow Sea monitoring platform and its scientific applications. Front. Mar. Sci. 6:601. doi: 10.3389/fmars.2019.00601
Kumar, S., Amor, S. N., Chanrion, O., … Neubert, T. (2017). Perturbations to the Lower Ionosphere by Tropical Cyclone Evan in the South Pacific Region, Journal of Geophysical Research: Space Physics, 122(8), 8720-8732, DOI: 10.1002/2017JA024023
Large, W., McWilliams, J., and Doney, S.: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Large, W.G., Yeager, S.G. The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33, 341–364 (2009). https://doi.org/10.1007/s00382-008-0441-3
Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel, Coupled Models, Int. J. High Perf. Comp. App., 19, 277–292, https://doi.org/10.1177/1094342005056116, 2005.
Lee S-K, Park W, van Sebille E, Baringer MO, Wang C, Enfield DB (2011) What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophys Res Lett, 38:L17607.
Lee, C.-Y., & Chen, S. S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere–wave–ocean models and observations. J. Atmos. Sci., 69, 3576-3594.
Lee, C.-Y., & Chen, S. S. (2014). Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Monthly weather review, 142(5), 1927-1944. doi:https://doi.org/10.1175/MWR-D-13-00122.1
Lee, J. H., Pang, I. C. & Moon, J. H. Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011. J. Geophys. Res. Oceans 121, 3777–3789 (2016).
Leipper, D.F.(1967): Observed ocean conditions and hurricane Hilda, 1964, J. Atmos. Sci., 24,182-196.
Lellouche, J.M., Greiner, E., Le Galloudec, O., … , Le Traon, P.Y. (2018). Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system, Ocean Sci., 14, 1093–1126, 2018, https://doi.org/10.5194/os-14-1093-2018
Lie, H. J., Cho, C. H., Lee, J. H., and Lee, S. (2003). Structure and eastward extension of the Changjiang River plume in the East China Sea. J. Geophys. Res. 108:3077. doi: 10.1029/2001JC001194
Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J., & Sui, C. H. (2003). Satellite observations of modulation of surface winds by typhoon‐induced upper ocean cooling. Geophysical Research Letters, 30(3).
Lin, I. I., Pun, I. F., & Lien, C. C. (2014). “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23), 8547-8553.
Lin, J., & Qian, T. (2019). Rapid intensification of tropical cyclones observed by AMSU satellites. Geophysical Research Letters, 46(12), 7054-7062.
Liu, B., and L. Xie, 2012: A scale-selective data assimilation approach to improving tropical cyclone track and intensity forecasts in a limited-area model: A case study of Hurricane Felix (2007). Wea. Forecasting, 27(1), 124–140.
Liu, X., Wei, J., Zhang, D. L., & Miller, W. (2019). Parameterizing sea surface temperature cooling induced by tropical cyclones: 1. Theory and an application to Typhoon Matsa (2005). Journal of Geophysical Research: Oceans, 124(2), 1215-1231.
Lukas, R. and Lindstrom, E. (1991). The Mixed Layer of the Western Equatorial Pacific Ocean, Journal of Geophysical Research, 96(C12), 3343-3357, DOI: 10.1029/91JC00687
Marchesiello, P., J. C. McWilliams, and A. Shchepetkin. 2001. Open boundary conditions forlong-term integration of regional oceanic models. Ocean Model., 3, 1–20.
Marks, F. D., Houze, R. A., Gamache, J. F., … Black, M. L. (2008). Structure and Dynamics of the Inner Core of Hurricane Isabel (2003). Part I: Traditional Diagnostic Analysis. Monthly Weather Review, 136(6), 2227-2247, DOI: 10.1175/2007MWR1858.1
Mei, W., Pasquero, C., Primeau, F. (2012). The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean, Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765
Mellor G.L., Yamada T. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics. 1982, 20(4), 851–875. doi:10.1029/RG020i004p00851
Moon, I.-J. and Kwon, S.-J. (2012) Impact of upper-ocean thermal structure on the intensity of Korean peninsula landfall typhoons. Progress in Oceanography, 105, 61–66.
Moon, I.-J., Kim, S.-H., Chan, J. C. L., 2019: Climate change and tropical cyclone trend. Nature, 570, E3–E5, https://doi.org/10.1038/s41586-019-1222-3.
Moon, I. J., Shim, J.-S., Lee, D. Y., Lee, J. H., Min, I. K., and Lim, K. C. (2010). Typhoon researches using the Ieodo Ocean Research Station: part I. importance and present status of typhoon observation. Atmos 20, 247–260.
Moon, N.N., Salehin, I., Parvin, M., Hasan, M.M., Talha, I.M., Debnath, S.C., Nur, F.N., Saifuzzaman, M., A natural language processing based advanced method of unnecessary video detection and the framework model, Int. J. Electr. Comput. Eng. (IJECE) (2021)
Neetu S, Lengaigne M, Vincent E M, Vialard J, Madec G, Samson G, Ramesh Kumar M R and Durand F 2012 Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal J. Geophys. Res. Oceans 117 C12020
Newinger, C., and R. Toumi, 2015: Potential impact of the colored Amazon and Orinoco plume on tropical cyclone intensity. J. Geophys. Res. Oceans, 120, 1296–1317,
https://doi.org/10.1002/2014JC010533.
Oey, L.-Y., Ezra, T., Wang, D.-P., … Yin, X.-Q. (2007). Hurricane-induced motions and interaction with ocean currents, Continental Shelf Research, 27, 1249–1263, https://doi.org/10.1016/j.csr.2007.01.008
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3-40.
Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones, Journal of the Atmospheric Sciences, 26, 3-40,
DOI: https://doi.org/10.1175/1520-0469(1969)026<0003: NSOTLC>2.0.CO;2
Palmen, E. (1948). On the formation and structure of tropical hurricanes, Geophysics, The University of Chicago Press, 3, 26-38.
Park, J. H., Yeo, D. E., Lee, K., Lee, H., Lee, S. W., Noh, S., . . . Nam, S. (2019). Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophysical Research Letters, 46(24), 14595-14603.
Peduzzi, P., Chatenoux, B., Dao, H., … Nordbeck, O. (2012). Global trends in tropical cyclone risk, Nature Climate Change, 2(4), 289-294, DOI: 10.1038/nclimate1410
Potter, H., DiMarco, S. F., & Knap, A. H. (2019). Tropical cyclone heat potential and the rapid intensification of Hurricane Harvey in the Texas Bight. Journal of Geophysical Research: Oceans, 124(4), 2440-2451.
Prakash, K. R., Nigam, T., and Pant, V. (2018). Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model. Ocean Sci. 14, 259–272. doi: 10.5194/os-14-259-2018
Price, J. F. (1981). Upper Ocean Response to a Hurricane, Journal of Physical Oceanography, 11(2), 153-175, DOI: 10.1175/1520-0485(1981)011<0153: UORTAH>2.0.CO;2
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr.,11, 153–175.
Pun, I.-F., and Coauthors, 2019: Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11, 3709, https://doi.org/10.3390/su11133709.
Pun, I.-F., Chan, J. C. L., Lin, I.-I., Chan, K. T. F., Price, J. F., Ko, D. S., . . . Huang, H.-C. (2019). Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11(13), 3709.
Retrieved from https://www.mdpi.com/2071-1050/11/13/3709
Pun, IF., Hsu, HH., Moon, IJ. et al. Marine heatwave as a supercharger for the strongest typhoon in the East China Sea. npj Clim Atmos Sci 6, 128 (2023).
https://doi.org/10.1038/s41612-023-00449-5
Rajeswari, J.J., Blanco, A.M., Unniappan, S. (2020) Phoenixin-20 (PNX-20) Suppresses Food Intake, Modulates Glucoregulatory Enzymes, and Enhances Glycolysis in Zebrafish. American journal of physiology. Regulatory, integrative and comparative physiology. 318(5): R917-R928.
Rappaport, E. N., Franklin, J. L., Avila, L. A., … Tribble, A. S. (2009). Advances and Challenges at the National Hurricane Center, Weather and Forecasting, 24(2), 395-419, DOI: 10.1175/2008WAF2222128.1
Robertson R, Hartlipp P. Surface wind mixing in the Regional Ocean Modeling System (ROMS). Geosci Lett. 2017;4(1):24. doi: 10.1186/s40562-017-0090-7. Epub 2017 Nov 2. PMID: 32215239; PMCID: PMC7067273.
Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126 , 1229–1247.
Roemmich, D., Riser, S., Davis, R., and Desaubies, Y. (2004). Autonomous profiling floats: Workhorse for broad-scale ocean observations. Mar. Technol. Soc. J. 38, 21–29. doi: 10.4031/002533204787522802
Rogers, R., S. S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599.
Rudzin, J.E., Wadler, J.B., Jaimes de la Cruz, B., …, Li, Q. (2019). A review of recent research progress on the effect of external influences on tropical cyclone intensity change, Tropical Cyclone Research and Review, 12, 200–215,
https://doi.org/10.1016/j.tcrr.2023.09.001
Rudzin, J.E.; Chen, S.; Sanabia, E.R.; Jayne, S.R. The air-sea response during Hurricane Irma’s (2017) rapid intensification over the Amazon-Orinoco River plume as measured by atmospheric and oceanic observations. J. Geophys. Res. Atmos. 2020, 125,
e2019JD032368
Schade, L.R., Emanuel, K.A., The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model, J. Atmos. Sci., 56 (4) (1999), pp. 642-651, DOI: https://doi.org/10.1175/1520-0469(1999)056<0642: TOSEOT>2.0.CO;2
Schwartz, C. S., Romine, G. S., Sobash, R. A., Fossell, K. R., & Weisman, M. L. (2015). NCAR’s experimental real-time convection-allowing ensemble prediction system. Weather and Forecasting, 30(6), 1645–1654. https://doi.org/10.1175/WAF-D-15-0103.1
Seroka, G. et al. Hurricane Irene sensitivity to stratified coastal ocean cooling. Mon. Weather Rev. 144, 3507–3530 (2016).
Shay, L. K. (2009). Oceanic Heat Content Variability in the Eastern Pacific Ocean for Hurricane Intensity Forecasting, Monthly Weather Review, 138, 6,
DOI: https://doi.org/10.1175/2010MWR3189.1
Shay, L. K., Goni, G. J., and Black, P. G. (2000). Effects of a Warm Oceanic Feature on Hurricane Opal, Monthly Weather Review, 128(5), 1366-1383, DOI: 10.1175/1520-0493(2000)128<1366: EOAWOF>2.0.CO;2
Shchepetkin, A.F., McWilliams, J.C., The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9 (2005), pp. 347-404
Shen, W., & Ginis, I. (2003). Effects of surface heat flux‐induced sea surface temperature changes on tropical cyclone intensity. Geophysical Research Letters, 30(18).
Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp.,
https://doi.org/10.5065/1dfh-6p97.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A Description of the Advanced Research WRF Version 2 (No. NCAR/TN-468+STR). University Corporation for Atmospheric Research. doi:10.5065/D6DZ069T
Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the surface layer of the tropics, J. Geophys. Res.-Oceans, 97, 7305–7316, https://doi.org/10.1029/92JC00407, 1992
Stella Bourdin, Sébastien Fromang, William Dulac, …, Fabrice Chauvin (2022). Intercomparison of four algorithms for detecting tropical cyclones using ERA5, Geoscientific Model Developmen, Geoscientific Model Development, 15(17), 2022, pp.6759-6786, DOI: 10.5194/gmd-15-6759-2022
Sun, J., Mahrt, L., Nappo, C. and Lenschow, D.H. (2015a) Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer. Journal of Atmospheric Science, 72, 1484–1503.
Sutyrin, G. G., and E. A. Agrenich, 1979: Interaction of the boundary layers of the ocean and atmosphere in a tropical cyclone. Meteor. Gidrol.,2, 45–56.
Tang, J., Zhang, J. A., Kieu, C., & Marks, F. D. (2018). Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations. Tropical Cyclone Research and Review, 7(4), 201-211.
Troen, I. and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary-Layer Meteorol., 37, 129-148.
Umlauf, L., Burchard, H., Hutter, K., Extending the k–ω turbulence model towards oceanic applications, Ocean Modelling, 5(3), 2003, 195-218, https://doi.org/10.1016/S1463-5003(02)00039-2.
Vialard, J., & Delecluse, P. (1998a). An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. Journal of Physical Oceanography, 28(6), 1071–1088. https://doi.org/10.1175/1520-0485(1998)028<1071: aosftt>2.0.co;2
Wallace, J. M., Mitchell, T. P., & Deser, C. (1989). The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. Journal of Climate, 2(12), 1492-1499. doi:https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
Wallcraft, A.J., Kara, A.B., Hurlburt, H.E., Metzger, J.E., Chassignet, E.P., Halliwell, G.H., 2008. Value of bulk heat flux parameterizations for ocean SST prediction. J. Mar. Syst. 74, doi:10.1016/j.marsys.2008.01.009
Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955
Wang P., Yang Y., Xue D., … , Liao H. (2023). Increasing Compound Hazards of Tropical Cyclones and Heatwaves over Southeastern Coast of China under Climate Warming. Journal of Climate, 36(7), 2243-2257, DOI: https://doi.org/10.1175/JCLI-D-22-0279.1
Wang, W., D. Barker, C. Bruy`ere, M. Duda, J. Dudhia, D. Gill, J. Michalakes, and S. Rizvi, 2008: WRF Version 3 Modeling System User’s Guide.
Wang, Y.-q., & Wu, C.-C. (2004). Current understanding of tropical cyclone structure and intensity changes–a review. Meteorology and Atmospheric Physics, 87(4), 257-278.
Warner, J.C., et al. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modell. (2010),
doi: 10.1016/j.ocemod.2010.07.010
Weatherford, C. L., and W. M. Gray (1988a), Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology, Mon. Weather Rev., 116, 1032–1043
Wei, N., Zhang, X.- H., Chen, L.- S., and Hu, H. (2018). Comparison of the effect of easterly and westerly vertical wind shear on tropical cyclone intensity change over the western North Pacific. Environ. Res. Lett. 13 (3), 034020. doi:10.1088/1748-9326/aaa496
Wong Annie P. S., Wijffels Susan E., Riser Stephen C., …, Park Hyuk-Min (2020). Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations from a Global Array of Profiling Floats. Frontiers in Marine Science, 7(700), 23p. Publisher′s official version: https://doi.org/10.3389/fmars.2020.00700
Wu, C.C., Zhan, R., Lu Y., and Wang Y. (2012). Internal variability of the dynamically downscaled tropical cyclone activity over the western North Pacific by the IPRC Regional Climate Model. Journal of Climate, 2104–2122, DOI: https://doi.org/10.1175/JCLI-D-11-00143.1
Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, https://doi.org/10.1029/2005GL022937.
Yamada Y, Satoh M, Sugi M, Kodama C, Noda AT, Nakano M, Nasuno T (2017) Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. J Clim 30:9703–9724. https://doi.org/10.1175/JCLI-D-17-0068.1
Zhang, F. and Sippel, J. A. (2009). Effects of Initial Condition Errors on Tropical Cyclone Prediction, Journal of the Atmospheric Sciences, 66(1), 40-62,
DOI: 10.1175/2008JAS2730.1
Zhang, H., H. Shu, H., G. Coatrieux, G., J. Zhu, J., Q.J. Wu, Q.J., Y. Zhang, Y., H. Zhu, H., L. Luo, L., Affine legendre moment invariants for image watermarking robust to geometric distortions, IEEE Trans. Image Process., 20 (2011), pp. 2189-2199
Zhong, Q. J., Zhang, L. F., Li, J. P., … , Feng, J. (2018). Estimating the Predictability Limit of Tropical Cyclone Tracks over the Western North Pacific Using Observational Data. Advances in Atmospheric Sciences, 35(12), 1491–1504, DOI: 10.1007/s00376-018-8008-7
ZLloyd, I. D. and Vecchi, G. A. (2011). Observational evidence for oceanic controls on hurricane intensity, Journal of Climate, 24(4), 1138-1153,
DOI: 10.1175/2010JCLI3763.1
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M. (2019). The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, 7 |