博碩士論文 110826004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:18.118.146.180
姓名 隋昀華(Yun-Hua Sui)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 白血病抑制因子調控口腔癌巨噬細胞免疫反應
(Leukemia inhibitory factor regulates macrophage immune response in oral squamous cell carcinoma)
相關論文
★ 含EBV病毒產物之外泌小體經由活化纖維母細胞重塑腫瘤微環境★ 靜磁場於癌細胞的生物效應
★ 白血病抑制因子活化蛋白酶激活受體1進而促進鼻咽癌細胞的遷移★ 白血病抑制因子促進Gα12介導的鼻咽癌細胞遷移能力
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 口腔鱗狀上皮細胞癌(口腔癌)的高復發率與免疫抑制的微環境有密切相關。巨噬細 胞在免疫微環境調控中扮演重要角色。白血病抑制因子為多效性的細胞激素且和多種 癌惡化相關。其中白血病抑制因子是否會調控巨噬細胞且進一步重塑腫瘤微環境仍有 許多未知。本研究目的為釐清白血病抑制因子在口腔癌中調控腫瘤相關巨噬細胞扮演 的角色以及探討白血病抑制因子與巨噬細胞調控免疫反應的臨床意義。分析 TCGA 口 腔癌資料庫顯示口腔癌患者表現較高白血病抑制因子與 M2 巨噬細胞標誌(CD206、 CD163 和 VEGF)。癌組織中較高白血病抑制因子的表現量與較差的整體存活率相關 (p =0.0019)。高免疫細胞白血病抑制因子表現的口腔癌切片中巨噬細胞傾向聚集在 腫瘤邊緣,免疫細胞白血病抑制因子表現量低或陰性的樣本中,型態較大的巨噬細胞 偏向聚集於腫瘤核心。細胞實驗顯示白血病抑制因子可促使巨噬細胞分化為免疫抑制 型態,由較低 M1 型標誌(iNOS、CD86)和增加 M2 型態標誌(CD163、CD209)表 現得知。將巨噬細胞和癌細胞共同培養時,白血病抑制因子可促進癌細胞生長與爬行 且降低巨噬細胞對癌細胞的毒殺能力。可溶性白血病抑制因子受體為白血病抑制因子 的拮抗劑。在培養環境中加入可溶性白血病抑制因子受體會降低白血病抑制因子所促 使的免疫抑制反應。單細胞轉錄體分析顯示白血病抑制因子降低巨噬細胞抗原呈現功 能的基因表現,與定量即時逆轉錄聚合酶連鎖反應結果一致。轉錄體功能性分析顯示 白血病抑制因子促使巨噬細胞中第一型干擾素、TNFR 以及 Hippo-YAP 相關信號途徑 的分子被抑制。此外,白血病抑制因子可能是透過活化 YAP1 誘導巨噬細胞 M2 相似型 態趨化,可由較多YAP1入核以及增加的活化YAP1和YAP1下游蛋白CTGF、IGFBP3 和 PDGFR⍺β 表現量得知。以藥物阻斷 YAP1 信號傳導可抑制白血病抑制因子所調控的 巨噬細胞免疫反應。本研究結果顯示白血病抑制因子在口腔癌巨噬細胞中會透過活化 YAP1,促進免疫抑制的腫瘤微環境形成。藉由抑制白血病抑制因子對巨噬細胞的調控, 如可溶性白血病抑制因子受體及YAP1抑制劑的應用,有潛能在高白血病抑制因子表現 的患者中反轉其免疫抑制性的微環境。
摘要(英) The high incidence of local recurrence in oral squamous cell carcinoma (OSCC) is linked to an immunosuppressive microenvironment. Macrophages play a pivotal role in remodeling tumor immunity. Leukemia inhibitory factor (LIF) is a pleiotropic cytokine with functions associated with tumor progression. Nevertheless, whether LIF modulates the functions of macrophages and hence induces a tumor-promoting microenvironment remains to be explored. In this study, we aimed to investigate the role of LIF in regulating function of macrophages and to determine the clinical relevance between LIF and macrophage-mediated immunity within OSCC. By analyzing the TCGA-OSCC database, we found higher levels of LIF and M2-like macrophage markers (CD206, CD163, VEGF) in tumor samples compared to normal counterparts. An elevated LIF expression was further correlated with a poorer overall survival (p =0.0019). Immunohistological analysis on OSCC revealed that macrophages were predominantly localized at the periphery of tumors infiltrated with LIF-rich immune cells. On the other hand, macrophages with a larger phenotype were found in the core area of tumors, in which the LIF immunoreactivities were negative to weak in immune populations. Treatment of recombinant LIF (rLIF) induced an immunosuppressive polarization, which was supported by increased expression of M2-like markers (CD163 and CD209) and decreased levels of M1-like markers (iNOS and CD86). In a macrophage-cancer cell coculture system, rLIF treatment promoted the motility and proliferation of OSCC cells, whereas decreased cytotoxic abilities of macrophages. Treating macrophages with soluble LIF receptor (sLIFR), a LIF antagonist, partly reversed the rLIF-mediated M2-like polarization and decreased cancer cytotoxicity. Results of single-cell RNA sequencing on rLIF-treated OSCC biopsy revealed suppression of antigen presentation process in macrophages, which was further verified by quantitative real-time polymerase chain reaction. Further, rLIF treatment in macrophages resulted in suppressed functions on type I interferon production, TNFR, and Hippo-YAP signalings. Mechanistically, rLIF-induced M2- like polarization may be promoted through YAP1 activation, which was evident by an enhanced YAP1 nuclear translocation and increased expressions of active YAP1 and its downstream proteins (CTGF, IGFBP3, and PDGFR⍺β). Pharmaceutical inhibition of YAP1 reduced the rLIF-mediated immune responses in macrophages. Collectively, our findings shed light on the LIF-mediated effects on macrophages. We proposed that LIF assists in establishing an immune- suppressive and tumor-promoting microenvironment through activating YAP1 in OSCC. Blockade of LIF-mediated effects might have the potential of converting the immunosuppressive microenvironment for selected OSCC patients.
關鍵字(中) ★ 白血病抑制因子
★ 口腔鱗狀上皮細胞癌
★ 巨噬細胞
關鍵字(英) ★ LIF
★ OSCC
★ Macrophage
論文目次 Chinese Abstract...................................................................................................ii English Abstract...................................................................................................iii Table of Contents................................................................................................. iv List of Figures.....................................................................................................vii List of Tables ....................................................................................................... ix List of Abbreviations ............................................................................................ x Chapter I Introduction......................................................................................... 1
1-1 Head and neck squamous cell carcinoma ................................................................... 1 1-1-1 Oral squamous cell carcinoma....................................................................... 1 1-1-1-1 Human papillomavirus positive OSCC ...................................................... 2
1-2 Leukemia inhibitory factor ......................................................................................... 3 1-2-1 Leukemia inhibitory factor in solid tumors ................................................... 4
1-3 Tumor microenvironment........................................................................................... 4 1-3-1 Tumor-associated macrophages..................................................................... 6 1-3-2 Tumor-associated macrophages in OSCC TME............................................ 7
1-4 Yes-associated Protein 1............................................................................................. 7 1-4-1 Role of YAP1 in macrophages ...................................................................... 8
Chapter II Materials and Methods ...................................................................... 9
2-1 Cell culture ................................................................................................................. 9 2-2 PBMC isolation from whole blood samples............................................................... 9 2-3 Macrophage differentiation ........................................................................................ 9 2-4 Real-time quantitative polymerase chain reaction (QRT-PCR)............................... 10
iv
2-5 Bulk RNA sequencing and library construction....................................................... 10 2-6 Single-cell sample preparation and library construction .......................................... 11 2-7 RNA sequencing data analysis ................................................................................. 11 2-8 Immunohistochemistry (IHC) .................................................................................. 11 2-9 Immunocytochemistry (ICC).................................................................................... 12 2-10 Western blot............................................................................................................ 13 2-11 Live cell time-lapse imaging .................................................................................. 13 2-12 Macrophage-cancer killing assay ........................................................................... 14 2-13 EdU (5-Ethynyl-2-deoxyuridine) cell proliferation assay ...................................... 14 2-14 Statistics.................................................................................................................. 15
Chapter III Results ............................................................................................ 16
3-1 High expression of LIF is identified in OSCC TME................................................ 16 3-2 Single cell analysis of TAMs under in vitro LIF stimulation................................... 16 3-3 LIF regulates MHC class II molecules in macrophages........................................... 17 3-4 LIF alters macrophage polarization.......................................................................... 18 3-5 LIF-treated macrophages exhibit lowered cytotoxicity towards OSCC................... 18 3-6 MDMs display dysfunctional immune regulation under LIF stimulation................ 19
3-6-1 Positive correlation between LIF and YAP1 signaling molecules in HNSCC ............................................................................................................ 20
3-7 LIF promotes YAP1 activation in TAMs................................................................. 20 3-8 Inhibition of YAP1 decreases LIF-mediated effects in TAMs ................................ 21 3-9 LIF regulates antigen presentation pathway in OSCC ............................................. 21
v

Chapter IV Conclusions and Discussions .................................................. 22 Chapter V Figures and Tables .......................................................................... 24 References........................................................................................................... 56
參考文獻 1. Chow, L.Q.M. (2020). Head and Neck Cancer. N Engl J Med 382, 60-72. 10.1056/NEJMra1715715.
2. Blot, W.J., McLaughlin, J.K., Winn, D.M., Austin, D.F., Greenberg, R.S., Preston-Martin, S., Bernstein, L., Schoenberg, J.B., Stemhagen, A., and Fraumeni, J.F., Jr. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 48, 3282-3287.
3. World Health, O. (2015). WHO global report on trends in prevalence of tobacco smoking 2015 (World Health Organization).
4. Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E., and Grandis, J.R. (2020). Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6, 92. 10.1038/s41572-020-00224-3.
5. Ang, K.K., Harris, J., Wheeler, R., Weber, R., Rosenthal, D.I., Nguyen-Tan, P.F., Westra, W.H., Chung, C.H., Jordan, R.C., Lu, C., et al. (2010). Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363, 24-35. 10.1056/NEJMoa0912217.
6. Lydiatt, W., O′Sullivan, B., and Patel, S. (2018). Major Changes in Head and Neck Staging for 2018. Am Soc Clin Oncol Educ Book 38, 505-514. 10.1200/EDBK_199697.
7. Califano, J., van der Riet, P., Westra, W., Nawroz, H., Clayman, G., Piantadosi, S., Corio, R., Lee, D., Greenberg, B., Koch, W., and Sidransky, D. (1996). Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56, 2488-2492.
8. Rubin Grandis, J., Melhem, M.F., Gooding, W.E., Day, R., Holst, V.A., Wagener, M.M., Drenning, S.D., and Tweardy, D.J. (1998). Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90, 824-832. 10.1093/jnci/90.11.824.
9. Zhu, X., Zhang, F., Zhang, W., He, J., Zhao, Y., and Chen, X. (2013). Prognostic role of epidermal growth factor receptor in head and neck cancer: a meta-analysis. J Surg Oncol 108, 387-397. 10.1002/jso.23406.
10. Choudhary, M.M., France, T.J., Teknos, T.N., and Kumar, P. (2016). Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg 2, 90-97. 10.1016/j.wjorl.2016.05.002.
11. Wang, Z., Valera, J.C., Zhao, X., Chen, Q., and Gutkind, J.S. (2017). mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev 36, 491-502. 10.1007/s10555-017-9688-7.
12. Krishnamurthy, S., Dong, Z., Vodopyanov, D., Imai, A., Helman, J.I., Prince, M.E., Wicha, M.S., and Nor, J.E. (2010). Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70, 9969-9978. 10.1158/0008-5472.CAN-10-1712.
13. Alamoud, K.A., and Kukuruzinska, M.A. (2018). Emerging Insights into Wnt/beta-catenin Signaling in Head and Neck Cancer. J Dent Res 97, 665-673. 10.1177/0022034518771923.
14. Deshmukh, V., and Shekar, K. (2021). Oral Squamous Cell Carcinoma: Diagnosis and Treatment Planning. In Oral and Maxillofacial Surgery for the Clinician, K. Bonanthaya, E. Panneerselvam, S. Manuel, V.V. Kumar, and A. Rai, eds. (Springer Nature Singapore), pp. 1853-1867. 10.1007/978-981-15-1346-6_81.
15. Yasin, M.M., Abbas, Z., and Hafeez, A. (2022). Correlation of histopathological patterns of OSCC patients with tumor site and habits. BMC Oral Health 22, 305. 10.1186/s12903-022-02336-6.
16. Pires, F.R., Ramos, A.B., Oliveira, J.B., Tavares, A.S., Luz, P.S., and Santos, T.C. (2013). Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single oral pathology service during an 8-year period. J Appl Oral Sci 21, 460-467. 10.1590/1679-775720130317.
17. Elmusrati, A.A., Pilborough, A.E., Khurram, S.A., and Lambert, D.W. (2017). Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma. Br J Cancer 117, 867-875. 10.1038/bjc.2017.239.
18. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424. 10.3322/caac.21492.
19. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209-249. 10.3322/caac.21660.
20. Sasahira, T., and Kirita, T. (2018). Hallmarks of Cancer-Related Newly Prognostic Factors of Oral Squamous Cell Carcinoma. Int J Mol Sci 19. 10.3390/ijms19082413.
21. Lin, N.C., Hsien, S.I., Hsu, J.T., and Chen, M.Y.C. (2021). Impact on patients with oral squamous cell carcinoma in different anatomical subsites: a single-center study in Taiwan. Sci Rep 11, 15446. 10.1038/s41598-021-95007-5.
22. Peltanova, B., Raudenska, M., and Masarik, M. (2019). Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18, 63. 10.1186/s12943-019-0983-5.
23. De Wever, O., Demetter, P., Mareel, M., and Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123, 2229-2238. 10.1002/ijc.23925.
24. Diao, P., Jiang, Y., Li, Y., Wu, X., Li, J., Zhou, C., Jiang, L., Zhang, W., Yan, E., Zhang, P., et al. (2021). Immune landscape and subtypes in primary resectable oral squamous cell carcinoma: prognostic significance and predictive of therapeutic response. J Immunother Cancer 9. 10.1136/jitc-2021-002434.
25. Li, Q., Liu, X., Wang, D., Wang, Y., Lu, H., Wen, S., Fang, J., Cheng, B., and Wang, Z. (2020). Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci 12, 24. 10.1038/s41368-020-00092-3.
26. Kimura, S., Nanbu, U., Noguchi, H., Harada, Y., Kumamoto, K., Sasaguri, Y., and Nakayama, T. (2019). Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J Oral Pathol Med 48, 677-685. 10.1111/jop.12885.
27. Shi, Y., Xie, T., Wang, B., Wang, R., Cai, Y., Yuan, B., Gleber-Netto, F.O., Tian, X., Rodriguez-Rosario, A.E., Osman, A.A., et al. (2022). Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma. Commun Biol 5, 757. 10.1038/s42003-022-03675-4.
28. Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. (1985). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111-114. 10.1038/314111a0.
29. Rettori, M.M., de Carvalho, A.C., Bomfim Longo, A.L., de Oliveira, C.Z., Kowalski, L.P., Carvalho, A.L., and Vettore, A.L. (2013). Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis 34, 20-27. 10.1093/carcin/bgs311.
30. Serrano, B., de Sanjose, S., Tous, S., Quiros, B., Munoz, N., Bosch, X., and Alemany, L. (2015). Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur J Cancer 51, 1732-1741. 10.1016/j.ejca.2015.06.001.
31. Araldi, R.P., Sant′Ana, T.A., Modolo, D.G., de Melo, T.C., Spadacci-Morena, D.D., de Cassia Stocco, R., Cerutti, J.M., and de Souza, E.B. (2018). The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 106, 1537-1556. 10.1016/j.biopha.2018.06.149.
32. Bansal, A., Singh, M.P., and Rai, B. (2016). Human papillomavirus-associated cancers: A growing global problem. Int J Appl Basic Med Res 6, 84-89. 10.4103/2229-516X.179027.
33. Lechner, M., Liu, J., Masterson, L., and Fenton, T.R. (2022). HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 19, 306-327. 10.1038/s41571-022-00603-7.
34. Senkomago, V., Henley, S.J., Thomas, C.C., Mix, J.M., Markowitz, L.E., and Saraiya, M. (2019). Human Papillomavirus-Attributable Cancers - United States, 2012-2016. MMWR Morb Mortal Wkly Rep 68, 724-728. 10.15585/mmwr.mm6833a3.
35. Wang, C.P., Chen, T.C., Hsu, W.L., Hsiao, J.R., Chen, P.R., Chen, M.K., Hua, C.H., Tsai, M.H., Ko, J.Y., Lou, P.J., et al. (2022). Rising incidence of HPV positive oropharyngeal cancer in Taiwan between 1999 and 2014 where betel nut chewing is common. BMC Cancer 22, 296. 10.1186/s12885-022-09407-5.
36. Hoppe-Seyler, K., Bossler, F., Braun, J.A., Herrmann, A.L., and Hoppe-Seyler, F. (2018). The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol 26, 158-168. 10.1016/j.tim.2017.07.007.
37. Yakin, M., Seo, B., Hussaini, H., Rich, A., and Hunter, K. (2019). Human papillomavirus and oral and oropharyngeal carcinoma: the essentials. Aust Dent J 64, 11-18. 10.1111/adj.12652.
38. Honegger, A., Leitz, J., Bulkescher, J., Hoppe-Seyler, K., and Hoppe-Seyler, F. (2013). Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. International Journal of Cancer 133, 1631-1642. https://doi.org/10.1002/ijc.28164.
39. Gameiro, S.F., Evans, A.M., and Mymryk, J.S. (2022). The tumor immune microenvironments of HPV(+) and HPV(-) head and neck cancers. WIREs Mech Dis 14, e1539. 10.1002/wsbm.1539.
40. Tosi, A., Parisatto, B., Menegaldo, A., Spinato, G., Guido, M., Del Mistro, A., Bussani, R., Zanconati, F., Tofanelli, M., Tirelli, G., et al. (2022). The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naive tumors with immune checkpoint inhibitors. J Exp Clin Cancer Res 41, 279. 10.1186/s13046-022-02481-4.
41. Dimitriadis, E., Menkhorst, E., Salamonsen, L.A., and Paiva, P. (2010). Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy. Placenta 31 Suppl, S99-104. 10.1016/j.placenta.2009.12.027.
42. Gearing, D.P., Gough, N.M., King, J.A., Hilton, D.J., Nicola, N.A., Simpson, R.J., Nice, E.C., Kelso, A., and Metcalf, D. (1987). Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6, 3995-4002. 10.1002/j.1460-2075.1987.tb02742.x.
43. Skiniotis, G., Lupardus, P.J., Martick, M., Walz, T., and Garcia, K.C. (2008). Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex. Mol Cell 31, 737-748. 10.1016/j.molcel.2008.08.011.
44. Nicola, N.A., and Babon, J.J. (2015). Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26, 533-544. 10.1016/j.cytogfr.2015.07.001.
45. Boulanger, M.J., and Garcia, K.C. (2004). Shared cytokine signaling receptors: structural insights from the gp130 system. Adv Protein Chem 68, 107-146. 10.1016/S0065-3233(04)68004-1.
46. Stahl, N., Boulton, T.G., Farruggella, T., Ip, N.Y., Davis, S., Witthuhn, B.A., Quelle, F.W., Silvennoinen, O., Barbieri, G., Pellegrini, S., and et al. (1994). Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263, 92-95. 10.1126/science.8272873.
47. Oshima, K., Teo, D.T., Senn, P., Starlinger, V., and Heller, S. (2007). LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Dev Biol 7, 112. 10.1186/1471-213X-7-112.
48. Poulton, I.J., McGregor, N.E., Pompolo, S., Walker, E.C., and Sims, N.A. (2012). Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization. J Bone Miner Res 27, 586-595. 10.1002/jbmr.1485.
49. Tang, W., Ramasamy, K., Pillai, S.M.A., Santhamma, B., Konda, S., Pitta Venkata, P., Blankenship, L., Liu, J., Liu, Z., Altwegg, K.A., et al. (2021). LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer. Cell Death Discov 7, 216. 10.1038/s41420-021-00603-z.
50. Shi, Y., Gao, W., Lytle, N.K., Huang, P., Yuan, X., Dann, A.M., Ridinger-Saison, M., DelGiorno, K.E., Antal, C.E., Liang, G., et al. (2019). Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131-135. 10.1038/s41586-019-1130-6.
51. Wang, M.-T., Fer, N., Galeas, J., Collisson, E.A., Kim, S.E., Sharib, J., and McCormick, F. (2019). Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nature Communications 10, 3055. 10.1038/s41467-019-11044-9.
52. Liu, S.C., Tsang, N.M., Chiang, W.C., Chang, K.P., Hsueh, C., Liang, Y., Juang, J.L., Chow, K.P., and Chang, Y.S. (2013). Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 123, 5269-5283. 10.1172/JCI63428.
53. Liu, S.C., Hsu, T., Chang, Y.S., Chung, A.K., Jiang, S.S., OuYang, C.N., Yuh, C.H., Hsueh, C., Liu, Y.P., and Tsang, N.M. (2018). Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling. Nat Commun 9, 5105. 10.1038/s41467-018-07660-6.
54. Won, H., Moreira, D., Gao, C., Duttagupta, P., Zhao, X., Manuel, E., Diamond, D., Yuan, Y.C., Liu, Z., Jones, J., et al. (2017). TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol 102, 423-436. 10.1189/jlb.3MA1016-451RR.
55. Viswanadhapalli, S., Luo, Y., Sareddy, G.R., Santhamma, B., Zhou, M., Li, M., Ma, S., Sonavane, R., Pratap, U.P., Altwegg, K.A., et al. (2019). EC359: A First-in-Class Small-Molecule Inhibitor for Targeting Oncogenic LIFR Signaling in Triple-Negative Breast Cancer. Mol Cancer Ther 18, 1341-1354. 10.1158/1535-7163.MCT-18-1258.
56. Hinshaw, D.C., and Shevde, L.A. (2019). The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res 79, 4557-4566. 10.1158/0008-5472.CAN-18-3962.
57. Stone, L. (2023). Singling out the immune-suppressive TME in prostate cancer. Nat Rev Urol 20, 199. 10.1038/s41585-023-00758-7.
58. Rojas, F., Bouaoud, J., Parra, E., Saintigny, P., Tamegnon, A., Jiang, M., Zhang, S., Renganayaki, P., Michon, L., Gadot, N., et al. (2021). 938 Study of the tumor microenvironment of oral squamous cell carcinoma using multiplex immunofluorescence and image analysis approaches. Journal for ImmunoTherapy of Cancer 9, A984-A984. 10.1136/jitc-2021-SITC2021.938.
59. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., and Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications 11, 5120. 10.1038/s41467-020-18794-x.
60. Anderson, N.M., and Simon, M.C. (2020). The tumor microenvironment. Current Biology 30, R921-R925. https://doi.org/10.1016/j.cub.2020.06.081.
61. Bagati, A., Kumar, S., Jiang, P., Pyrdol, J., Zou, A.E., Godicelj, A., Mathewson, N.D., Cartwright, A.N.R., Cejas, P., Brown, M., et al. (2021). Integrin alphavbeta6-TGFbeta-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 39, 54-67 e59. 10.1016/j.ccell.2020.12.001.
62. Colak, S., and Ten Dijke, P. (2017). Targeting TGF-beta Signaling in Cancer. Trends Cancer 3, 56-71. 10.1016/j.trecan.2016.11.008.
63. Shi, X., Yang, J., Deng, S., Xu, H., Wu, D., Zeng, Q., Wang, S., Hu, T., Wu, F., and Zhou, H. (2022). TGF-beta signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 15, 135. 10.1186/s13045-022-01349-6.
64. Tamura, R., Tanaka, T., Akasaki, Y., Murayama, Y., Yoshida, K., and Sasaki, H. (2019). The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 37, 2. 10.1007/s12032-019-1329-2.
65. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., and Adema, G.J. (2013). The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105-115. 10.1111/imm.12036.
66. Li, Y.L., Zhao, H., and Ren, X.B. (2016). Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol Med 13, 206-214. 10.20892/j.issn.2095-3941.2015.0070.
67. Affo, S., Yu, L.X., and Schwabe, R.F. (2017). The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol 12, 153-186. 10.1146/annurev-pathol-052016-100322.
68. Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., Fearon, D., Greten, F.R., Hingorani, S.R., Hunter, T., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer 20, 174-186. 10.1038/s41568-019-0238-1.
69. Lee, P.J., Sui, Y.H., Liu, T.T., Tsang, N.M., Huang, C.H., Lin, T.Y., Chang, K.P., and Liu, S.C. (2022). Epstein-Barr viral product-containing exosomes promote fibrosis and nasopharyngeal carcinoma progression through activation of YAP1/FAPalpha signaling in fibroblasts. J Exp Clin Cancer Res 41, 254. 10.1186/s13046-022-02456-5.
70. Pietila, M., Ivaska, J., and Mani, S.A. (2016). Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Cancer Lett 380, 359-368. 10.1016/j.canlet.2015.12.033.
71. Peinado, H., Zhang, H., Matei, I.R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R.N., Bromberg, J.F., Kang, Y., et al. (2017). Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17, 302-317. 10.1038/nrc.2017.6.
72. Psaila, B., and Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9, 285-293. 10.1038/nrc2621.
73. Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827. 10.1038/nature04186.
74. Jin, M.Z., and Jin, W.L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 5, 166. 10.1038/s41392-020-00280-x.
75. Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L., Vatan, L., Shao, I., Szeliga, W., et al. (2017). Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18, 1332-1341. 10.1038/ni.3868.
76. Blank, C.U., and Enk, A. (2015). Therapeutic use of anti-CTLA-4 antibodies. Int Immunol 27, 3-10. 10.1093/intimm/dxu076.
77. Sarode, P., Zheng, X., Giotopoulou, G.A., Weigert, A., Kuenne, C., Gunther, S., Friedrich, A., Gattenlohner, S., Stiewe, T., Brune, B., et al. (2020). Reprogramming of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. Sci Adv 6, eaaz6105. 10.1126/sciadv.aaz6105.
78. Marcovecchio, P.M., Thomas, G., and Salek-Ardakani, S. (2021). CXCL9-expressing tumor-associated macrophages: new players in the fight against cancer. J Immunother Cancer 9. 10.1136/jitc-2020-002045.
79. Chen, Y., Song, Y., Du, W., Gong, L., Chang, H., and Zou, Z. (2019). Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26, 78. 10.1186/s12929-019-0568-z.
80. Zhu, S., Luo, Z., Li, X., Han, X., Shi, S., and Zhang, T. (2021). Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 12, 54-64. 10.7150/jca.49692.
81. Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. 10.1038/nature12034.
82. Schmall, A., Al-Tamari, H.M., Herold, S., Kampschulte, M., Weigert, A., Wietelmann, A., Vipotnik, N., Grimminger, F., Seeger, W., Pullamsetti, S.S., and Savai, R. (2015). Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med 191, 437-447. 10.1164/rccm.201406-1137OC.
83. Xiang, X., Wang, J., Lu, D., and Xu, X. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6, 75. 10.1038/s41392-021-00484-9.
84. Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., Modak, M., Carotta, S., Haslinger, C., Kind, D., et al. (2019). Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell 179, 829-845 e820. 10.1016/j.cell.2019.10.003.
85. Yeung, O.W., Lo, C.M., Ling, C.C., Qi, X., Geng, W., Li, C.X., Ng, K.T., Forbes, S.J., Guan, X.Y., Poon, R.T., et al. (2015). Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 62, 607-616. 10.1016/j.jhep.2014.10.029.
86. Guillot, A., and Tacke, F. (2019). Liver Macrophages: Old Dogmas and New Insights. Hepatol Commun 3, 730-743. 10.1002/hep4.1356.
87. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14, 399-416. 10.1038/nrclinonc.2016.217.
88. Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M., Omodei, A.S., Ricci, B., et al. (2020). TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 182, 886-900 e817. 10.1016/j.cell.2020.07.013.
89. Gubin, M.M., Esaulova, E., Ward, J.P., Malkova, O.N., Runci, D., Wong, P., Noguchi, T., Arthur, C.D., Meng, W., Alspach, E., et al. (2018). High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell 175, 1443. 10.1016/j.cell.2018.11.003.
90. Spear, P., Barber, A., Rynda-Apple, A., and Sentman, C.L. (2012). Chimeric Antigen Receptor T Cells Shape Myeloid Cell Function within the Tumor Microenvironment through IFN-γ and GM-CSF. The Journal of Immunology 188, 6389-6398. 10.4049/jimmunol.1103019.
91. Chen, Y., Jin, H., Song, Y., Huang, T., Cao, J., Tang, Q., and Zou, Z. (2021). Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 236, 3445-3465. 10.1002/jcp.30139.
92. Zhang, W., Tian, J., and Hao, Q. (2014). HMGB1 combining with tumor-associated macrophages enhanced lymphangiogenesis in human epithelial ovarian cancer. Tumour Biol 35, 2175-2186. 10.1007/s13277-013-1288-8.
93. Ma, R.Y., Black, A., and Qian, B.Z. (2022). Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol 43, 546-563. 10.1016/j.it.2022.04.008.
94. Clark, N.M., Martinez, L.M., Murdock, S., deLigio, J.T., Olex, A.L., Effi, C., Dozmorov, M.G., and Bos, P.D. (2020). Regulatory T Cells Support Breast Cancer Progression by Opposing IFN-gamma-Dependent Functional Reprogramming of Myeloid Cells. Cell Rep 33, 108482. 10.1016/j.celrep.2020.108482.
95. Li, M., He, L., Zhu, J., Zhang, P., and Liang, S. (2022). Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 12, 85. 10.1186/s13578-022-00823-5.
96. Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11, 889-896. 10.1038/ni.1937.
97. Zhang, F., Parayath, N.N., Ene, C.I., Stephan, S.B., Koehne, A.L., Coon, M.E., Holland, E.C., and Stephan, M.T. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 10, 3974. 10.1038/s41467-019-11911-5.
98. Tzetzo, S.L., and Abrams, S.I. (2021). Redirecting macrophage function to sustain their "defender" antitumor activity. Cancer Cell 39, 734-737. 10.1016/j.ccell.2021.03.002.
99. Chawla, H., Urs, A.B., and Augustine, J. (2017). Association of Macrophages With Angiogenesis in Oral Epithelial Dysplasia, Oral Verrucous Carcinoma, and Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 25, 203-208. 10.1097/PAI.0000000000000284.
100. Kalogirou, E.M., Tosios, K.I., and Christopoulos, P.F. (2021). The Role of Macrophages in Oral Squamous Cell Carcinoma. Front Oncol 11, 611115. 10.3389/fonc.2021.611115.
101. You, Y., Tian, Z., Du, Z., Wu, K., Xu, G., Dai, M., Wang, Y., and Xiao, M. (2022). M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res 41, 10. 10.1186/s13046-021-02222-z.
102. Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nat Rev Cancer 13, 246-257. 10.1038/nrc3458.
103. Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J.T., Johnson, R.L., and Martin, J.F. (2013). Hippo signaling impedes adult heart regeneration. Development 140, 4683-4690. 10.1242/dev.102798.
104. Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the <em>Drosophila</em> Homolog of YAP. Cell 122, 421-434. 10.1016/j.cell.2005.06.007.
105. Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761. 10.1101/gad.1602907.
106. Johnson, R., and Halder, G. (2014). The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13, 63-79. 10.1038/nrd4161.
107. Wu, H., Liu, Y., Liao, Z., Mo, J., Zhang, Q., Zhang, B., and Zhang, L. (2022). The role of YAP1 in liver cancer stem cells: proven and potential mechanisms. Biomark Res 10, 42. 10.1186/s40364-022-00387-z.
108. Shibata, M., Ham, K., and Hoque, M.O. (2018). A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer 143, 2133-2144. 10.1002/ijc.31561.
109. Wang, Y., Xu, X., Maglic, D., Dill, M.T., Mojumdar, K., Ng, P.K., Jeong, K.J., Tsang, Y.H., Moreno, D., Bhavana, V.H., et al. (2018). Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep 25, 1304-1317 e1305. 10.1016/j.celrep.2018.10.001.
110. Kim, N.G., and Gumbiner, B.M. (2015). Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210, 503-515. 10.1083/jcb.201501025.
111. Kim, N.-G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences 108, 11930-11935. doi:10.1073/pnas.1103345108.
112. Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., and Halder, G. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36. 10.1038/ncb1339.
113. Wang, L., Luo, J.Y., Li, B., Tian, X.Y., Chen, L.J., Huang, Y., Liu, J., Deng, D., Lau, C.W., Wan, S., et al. (2016). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582. 10.1038/nature20602.
114. Moya, I.M., and Halder, G. (2019). Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20, 211-226. 10.1038/s41580-018-0086-y.
115. Lee, K.W., Lee, S.S., Kim, S.B., Sohn, B.H., Lee, H.S., Jang, H.J., Park, Y.Y., Kopetz, S., Kim, S.S., Oh, S.C., and Lee, J.S. (2015). Significant association of oncogene YAP1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin Cancer Res 21, 357-364. 10.1158/1078-0432.CCR-14-1374.
116. Seton-Rogers, S. (2014). All eyes on YAP1. Nature Reviews Cancer 14, 515-515. 10.1038/nrc3791.
117. Noguchi, S., Saito, A., Horie, M., Mikami, Y., Suzuki, H.I., Morishita, Y., Ohshima, M., Abiko, Y., Mattsson, J.S., Konig, H., et al. (2014). An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clin Cancer Res 20, 4660-4672. 10.1158/1078-0432.CCR-13-3328.
118. Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z.-G., and Hynes, R.O. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences 109, E2441-E2450. doi:10.1073/pnas.1212021109.
119. Kapoor, A., Yao, W., Ying, H., Hua, S., Liewen, A., Wang, Q., Zhong, Y., Wu, C.J., Sadanandam, A., Hu, B., et al. (2014). Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185-197. 10.1016/j.cell.2014.06.003.
120. Nishio, M., Sugimachi, K., Goto, H., Wang, J., Morikawa, T., Miyachi, Y., Takano, Y., Hikasa, H., Itoh, T., Suzuki, S.O., et al. (2016). Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A 113, E71-80. 10.1073/pnas.1517188113.
121. Wei, C., and Li, X. (2020). Verteporfin inhibits cell proliferation and induces apoptosis in different subtypes of breast cancer cell lines without light activation. BMC Cancer 20, 1042. 10.1186/s12885-020-07555-0.
122. Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., Guerrero-Juarez, C.F., Yamaga, K., Pandori, W., Hsieh, J.Y., et al. (2020). YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci Adv 6. 10.1126/sciadv.abb8471.
123. Liu, M., Yan, M., Lv, H., Wang, B., Lv, X., Zhang, H., Xiang, S., Du, J., Liu, T., Tian, Y., et al. (2020). Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep 32, 107990. 10.1016/j.celrep.2020.107990.
124. Zhou, X., Franklin, R.A., Adler, M., Carter, T.S., Condiff, E., Adams, T.S., Pope, S.D., Philip, N.H., Meizlish, M.L., Kaminski, N., and Medzhitov, R. (2022). Microenvironmental sensing by fibroblasts controls macrophage population size. Proc Natl Acad Sci U S A 119, e2205360119. 10.1073/pnas.2205360119.
125. Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., and Sahai, E. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15, 637-646. 10.1038/ncb2756.
126. Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., Zhang, B., Meng, Q., Yu, X., and Shi, S. (2021). Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer 20, 131. 10.1186/s12943-021-01428-1.
127. Zanconato, F., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ at the Roots of Cancer. Cancer Cell 29, 783-803. https://doi.org/10.1016/j.ccell.2016.05.005.
128. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8.
129. Wang, X., and Cairns, M.J. (2014). SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics 30, 1777-1779. 10.1093/bioinformatics/btu090.
130. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529. 10.1016/j.cell.2021.04.048.
131. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337 e324. 10.1016/j.cels.2019.03.003.
132. Tickle, T.a.T., Itay and Georgescu, Christophe and, and Brown, M.a.H., Brian (2019). inferCNV of the Trinity CTAT Project.
133. Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V., and Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nat Commun 12, 1088. 10.1038/s41467-021-21246-9.
134. McClelland, M., Zhao, L., Carskadon, S., and Arenberg, D. (2009). Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am J Pathol 174, 638-646. 10.2353/ajpath.2009.080463.
135. Zhen, A., Krutzik, S.R., Levin, B.R., Kasparian, S., Zack, J.A., and Kitchen, S.G. (2014). CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol 88, 9934-9946. 10.1128/JVI.00616-14.
136. Holling, T.M., Schooten, E., and van Den Elsen, P.J. (2004). Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 65, 282-290. 10.1016/j.humimm.2004.01.005.
137. Chen, S., Saeed, A., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., Rao, L., and Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 8, 207. 10.1038/s41392-023-01452-1.
138. Naserian, S., Abdelgawad, M.E., Afshar Bakshloo, M., Ha, G., Arouche, N., Cohen, J.L., Salomon, B.L., and Uzan, G. (2020). The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Communication and Signaling 18, 94. 10.1186/s12964-020-00564-3.
139. Leibovich, S.J., Polverini, P.J., Shepard, H.M., Wiseman, D.M., Shively, V., and Nuseir, N. (1987). Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329, 630-632. 10.1038/329630a0.
140. Shen, Y.W., Zhou, Y.D., Chen, H.Z., Luan, X., and Zhang, W.D. (2021). Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 7, 511-524. 10.1016/j.trecan.2020.12.001.
141. Zou, X., Tang, X.Y., Qu, Z.Y., Sun, Z.W., Ji, C.F., Li, Y.J., and Guo, S.D. (2022). Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 202, 539-557. 10.1016/j.ijbiomac.2022.01.113.
142. Kim, S.Y., and Nair, M.G. (2019). Macrophages in wound healing: activation and plasticity. Immunol Cell Biol 97, 258-267. 10.1111/imcb.12236.
143. Kambayashi, T., and Laufer, T.M. (2014). Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews Immunology 14, 719-730. 10.1038/nri3754.
144. Axelrod, M.L., Cook, R.S., Johnson, D.B., and Balko, J.M. (2019). Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 25, 2392-2402. 10.1158/1078-0432.Ccr-18-3200.
145. Xu, B., Salama, A.M., Valero, C., Yuan, A., Khimraj, A., Saliba, M., Zanoni, D.K., Ganly, I., Ghossein, R., Patel, S.G., and Katabi, N. (2021). Histologic evaluation of host immune microenvironment and its prognostic significance in oral tongue squamous cell carcinoma: a comparative study on lymphocytic host response (LHR) and tumor infiltrating lymphocytes (TILs). Pathol Res Pract 228, 153473. 10.1016/j.prp.2021.153473.
146. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J.T., and Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233, 6425-6440. 10.1002/jcp.26429.
147. Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis, 2 Edition (Springer International Publishing).
指導教授 劉淑貞(Shu-Chen Liu) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明