參考文獻 |
1. Chow, L.Q.M. (2020). Head and Neck Cancer. N Engl J Med 382, 60-72. 10.1056/NEJMra1715715.
2. Blot, W.J., McLaughlin, J.K., Winn, D.M., Austin, D.F., Greenberg, R.S., Preston-Martin, S., Bernstein, L., Schoenberg, J.B., Stemhagen, A., and Fraumeni, J.F., Jr. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 48, 3282-3287.
3. World Health, O. (2015). WHO global report on trends in prevalence of tobacco smoking 2015 (World Health Organization).
4. Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E., and Grandis, J.R. (2020). Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6, 92. 10.1038/s41572-020-00224-3.
5. Ang, K.K., Harris, J., Wheeler, R., Weber, R., Rosenthal, D.I., Nguyen-Tan, P.F., Westra, W.H., Chung, C.H., Jordan, R.C., Lu, C., et al. (2010). Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363, 24-35. 10.1056/NEJMoa0912217.
6. Lydiatt, W., O′Sullivan, B., and Patel, S. (2018). Major Changes in Head and Neck Staging for 2018. Am Soc Clin Oncol Educ Book 38, 505-514. 10.1200/EDBK_199697.
7. Califano, J., van der Riet, P., Westra, W., Nawroz, H., Clayman, G., Piantadosi, S., Corio, R., Lee, D., Greenberg, B., Koch, W., and Sidransky, D. (1996). Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56, 2488-2492.
8. Rubin Grandis, J., Melhem, M.F., Gooding, W.E., Day, R., Holst, V.A., Wagener, M.M., Drenning, S.D., and Tweardy, D.J. (1998). Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90, 824-832. 10.1093/jnci/90.11.824.
9. Zhu, X., Zhang, F., Zhang, W., He, J., Zhao, Y., and Chen, X. (2013). Prognostic role of epidermal growth factor receptor in head and neck cancer: a meta-analysis. J Surg Oncol 108, 387-397. 10.1002/jso.23406.
10. Choudhary, M.M., France, T.J., Teknos, T.N., and Kumar, P. (2016). Interleukin-6 role in head and neck squamous cell carcinoma progression. World J Otorhinolaryngol Head Neck Surg 2, 90-97. 10.1016/j.wjorl.2016.05.002.
11. Wang, Z., Valera, J.C., Zhao, X., Chen, Q., and Gutkind, J.S. (2017). mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev 36, 491-502. 10.1007/s10555-017-9688-7.
12. Krishnamurthy, S., Dong, Z., Vodopyanov, D., Imai, A., Helman, J.I., Prince, M.E., Wicha, M.S., and Nor, J.E. (2010). Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70, 9969-9978. 10.1158/0008-5472.CAN-10-1712.
13. Alamoud, K.A., and Kukuruzinska, M.A. (2018). Emerging Insights into Wnt/beta-catenin Signaling in Head and Neck Cancer. J Dent Res 97, 665-673. 10.1177/0022034518771923.
14. Deshmukh, V., and Shekar, K. (2021). Oral Squamous Cell Carcinoma: Diagnosis and Treatment Planning. In Oral and Maxillofacial Surgery for the Clinician, K. Bonanthaya, E. Panneerselvam, S. Manuel, V.V. Kumar, and A. Rai, eds. (Springer Nature Singapore), pp. 1853-1867. 10.1007/978-981-15-1346-6_81.
15. Yasin, M.M., Abbas, Z., and Hafeez, A. (2022). Correlation of histopathological patterns of OSCC patients with tumor site and habits. BMC Oral Health 22, 305. 10.1186/s12903-022-02336-6.
16. Pires, F.R., Ramos, A.B., Oliveira, J.B., Tavares, A.S., Luz, P.S., and Santos, T.C. (2013). Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single oral pathology service during an 8-year period. J Appl Oral Sci 21, 460-467. 10.1590/1679-775720130317.
17. Elmusrati, A.A., Pilborough, A.E., Khurram, S.A., and Lambert, D.W. (2017). Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma. Br J Cancer 117, 867-875. 10.1038/bjc.2017.239.
18. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68, 394-424. 10.3322/caac.21492.
19. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71, 209-249. 10.3322/caac.21660.
20. Sasahira, T., and Kirita, T. (2018). Hallmarks of Cancer-Related Newly Prognostic Factors of Oral Squamous Cell Carcinoma. Int J Mol Sci 19. 10.3390/ijms19082413.
21. Lin, N.C., Hsien, S.I., Hsu, J.T., and Chen, M.Y.C. (2021). Impact on patients with oral squamous cell carcinoma in different anatomical subsites: a single-center study in Taiwan. Sci Rep 11, 15446. 10.1038/s41598-021-95007-5.
22. Peltanova, B., Raudenska, M., and Masarik, M. (2019). Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 18, 63. 10.1186/s12943-019-0983-5.
23. De Wever, O., Demetter, P., Mareel, M., and Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123, 2229-2238. 10.1002/ijc.23925.
24. Diao, P., Jiang, Y., Li, Y., Wu, X., Li, J., Zhou, C., Jiang, L., Zhang, W., Yan, E., Zhang, P., et al. (2021). Immune landscape and subtypes in primary resectable oral squamous cell carcinoma: prognostic significance and predictive of therapeutic response. J Immunother Cancer 9. 10.1136/jitc-2021-002434.
25. Li, Q., Liu, X., Wang, D., Wang, Y., Lu, H., Wen, S., Fang, J., Cheng, B., and Wang, Z. (2020). Prognostic value of tertiary lymphoid structure and tumour infiltrating lymphocytes in oral squamous cell carcinoma. Int J Oral Sci 12, 24. 10.1038/s41368-020-00092-3.
26. Kimura, S., Nanbu, U., Noguchi, H., Harada, Y., Kumamoto, K., Sasaguri, Y., and Nakayama, T. (2019). Macrophage CCL22 expression in the tumor microenvironment and implications for survival in patients with squamous cell carcinoma of the tongue. J Oral Pathol Med 48, 677-685. 10.1111/jop.12885.
27. Shi, Y., Xie, T., Wang, B., Wang, R., Cai, Y., Yuan, B., Gleber-Netto, F.O., Tian, X., Rodriguez-Rosario, A.E., Osman, A.A., et al. (2022). Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma. Commun Biol 5, 757. 10.1038/s42003-022-03675-4.
28. Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. (1985). Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111-114. 10.1038/314111a0.
29. Rettori, M.M., de Carvalho, A.C., Bomfim Longo, A.L., de Oliveira, C.Z., Kowalski, L.P., Carvalho, A.L., and Vettore, A.L. (2013). Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis 34, 20-27. 10.1093/carcin/bgs311.
30. Serrano, B., de Sanjose, S., Tous, S., Quiros, B., Munoz, N., Bosch, X., and Alemany, L. (2015). Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur J Cancer 51, 1732-1741. 10.1016/j.ejca.2015.06.001.
31. Araldi, R.P., Sant′Ana, T.A., Modolo, D.G., de Melo, T.C., Spadacci-Morena, D.D., de Cassia Stocco, R., Cerutti, J.M., and de Souza, E.B. (2018). The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 106, 1537-1556. 10.1016/j.biopha.2018.06.149.
32. Bansal, A., Singh, M.P., and Rai, B. (2016). Human papillomavirus-associated cancers: A growing global problem. Int J Appl Basic Med Res 6, 84-89. 10.4103/2229-516X.179027.
33. Lechner, M., Liu, J., Masterson, L., and Fenton, T.R. (2022). HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 19, 306-327. 10.1038/s41571-022-00603-7.
34. Senkomago, V., Henley, S.J., Thomas, C.C., Mix, J.M., Markowitz, L.E., and Saraiya, M. (2019). Human Papillomavirus-Attributable Cancers - United States, 2012-2016. MMWR Morb Mortal Wkly Rep 68, 724-728. 10.15585/mmwr.mm6833a3.
35. Wang, C.P., Chen, T.C., Hsu, W.L., Hsiao, J.R., Chen, P.R., Chen, M.K., Hua, C.H., Tsai, M.H., Ko, J.Y., Lou, P.J., et al. (2022). Rising incidence of HPV positive oropharyngeal cancer in Taiwan between 1999 and 2014 where betel nut chewing is common. BMC Cancer 22, 296. 10.1186/s12885-022-09407-5.
36. Hoppe-Seyler, K., Bossler, F., Braun, J.A., Herrmann, A.L., and Hoppe-Seyler, F. (2018). The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol 26, 158-168. 10.1016/j.tim.2017.07.007.
37. Yakin, M., Seo, B., Hussaini, H., Rich, A., and Hunter, K. (2019). Human papillomavirus and oral and oropharyngeal carcinoma: the essentials. Aust Dent J 64, 11-18. 10.1111/adj.12652.
38. Honegger, A., Leitz, J., Bulkescher, J., Hoppe-Seyler, K., and Hoppe-Seyler, F. (2013). Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. International Journal of Cancer 133, 1631-1642. https://doi.org/10.1002/ijc.28164.
39. Gameiro, S.F., Evans, A.M., and Mymryk, J.S. (2022). The tumor immune microenvironments of HPV(+) and HPV(-) head and neck cancers. WIREs Mech Dis 14, e1539. 10.1002/wsbm.1539.
40. Tosi, A., Parisatto, B., Menegaldo, A., Spinato, G., Guido, M., Del Mistro, A., Bussani, R., Zanconati, F., Tofanelli, M., Tirelli, G., et al. (2022). The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naive tumors with immune checkpoint inhibitors. J Exp Clin Cancer Res 41, 279. 10.1186/s13046-022-02481-4.
41. Dimitriadis, E., Menkhorst, E., Salamonsen, L.A., and Paiva, P. (2010). Review: LIF and IL11 in trophoblast-endometrial interactions during the establishment of pregnancy. Placenta 31 Suppl, S99-104. 10.1016/j.placenta.2009.12.027.
42. Gearing, D.P., Gough, N.M., King, J.A., Hilton, D.J., Nicola, N.A., Simpson, R.J., Nice, E.C., Kelso, A., and Metcalf, D. (1987). Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6, 3995-4002. 10.1002/j.1460-2075.1987.tb02742.x.
43. Skiniotis, G., Lupardus, P.J., Martick, M., Walz, T., and Garcia, K.C. (2008). Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex. Mol Cell 31, 737-748. 10.1016/j.molcel.2008.08.011.
44. Nicola, N.A., and Babon, J.J. (2015). Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26, 533-544. 10.1016/j.cytogfr.2015.07.001.
45. Boulanger, M.J., and Garcia, K.C. (2004). Shared cytokine signaling receptors: structural insights from the gp130 system. Adv Protein Chem 68, 107-146. 10.1016/S0065-3233(04)68004-1.
46. Stahl, N., Boulton, T.G., Farruggella, T., Ip, N.Y., Davis, S., Witthuhn, B.A., Quelle, F.W., Silvennoinen, O., Barbieri, G., Pellegrini, S., and et al. (1994). Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263, 92-95. 10.1126/science.8272873.
47. Oshima, K., Teo, D.T., Senn, P., Starlinger, V., and Heller, S. (2007). LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Dev Biol 7, 112. 10.1186/1471-213X-7-112.
48. Poulton, I.J., McGregor, N.E., Pompolo, S., Walker, E.C., and Sims, N.A. (2012). Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization. J Bone Miner Res 27, 586-595. 10.1002/jbmr.1485.
49. Tang, W., Ramasamy, K., Pillai, S.M.A., Santhamma, B., Konda, S., Pitta Venkata, P., Blankenship, L., Liu, J., Liu, Z., Altwegg, K.A., et al. (2021). LIF/LIFR oncogenic signaling is a novel therapeutic target in endometrial cancer. Cell Death Discov 7, 216. 10.1038/s41420-021-00603-z.
50. Shi, Y., Gao, W., Lytle, N.K., Huang, P., Yuan, X., Dann, A.M., Ridinger-Saison, M., DelGiorno, K.E., Antal, C.E., Liang, G., et al. (2019). Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131-135. 10.1038/s41586-019-1130-6.
51. Wang, M.-T., Fer, N., Galeas, J., Collisson, E.A., Kim, S.E., Sharib, J., and McCormick, F. (2019). Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nature Communications 10, 3055. 10.1038/s41467-019-11044-9.
52. Liu, S.C., Tsang, N.M., Chiang, W.C., Chang, K.P., Hsueh, C., Liang, Y., Juang, J.L., Chow, K.P., and Chang, Y.S. (2013). Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest 123, 5269-5283. 10.1172/JCI63428.
53. Liu, S.C., Hsu, T., Chang, Y.S., Chung, A.K., Jiang, S.S., OuYang, C.N., Yuh, C.H., Hsueh, C., Liu, Y.P., and Tsang, N.M. (2018). Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling. Nat Commun 9, 5105. 10.1038/s41467-018-07660-6.
54. Won, H., Moreira, D., Gao, C., Duttagupta, P., Zhao, X., Manuel, E., Diamond, D., Yuan, Y.C., Liu, Z., Jones, J., et al. (2017). TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. J Leukoc Biol 102, 423-436. 10.1189/jlb.3MA1016-451RR.
55. Viswanadhapalli, S., Luo, Y., Sareddy, G.R., Santhamma, B., Zhou, M., Li, M., Ma, S., Sonavane, R., Pratap, U.P., Altwegg, K.A., et al. (2019). EC359: A First-in-Class Small-Molecule Inhibitor for Targeting Oncogenic LIFR Signaling in Triple-Negative Breast Cancer. Mol Cancer Ther 18, 1341-1354. 10.1158/1535-7163.MCT-18-1258.
56. Hinshaw, D.C., and Shevde, L.A. (2019). The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res 79, 4557-4566. 10.1158/0008-5472.CAN-18-3962.
57. Stone, L. (2023). Singling out the immune-suppressive TME in prostate cancer. Nat Rev Urol 20, 199. 10.1038/s41585-023-00758-7.
58. Rojas, F., Bouaoud, J., Parra, E., Saintigny, P., Tamegnon, A., Jiang, M., Zhang, S., Renganayaki, P., Michon, L., Gadot, N., et al. (2021). 938 Study of the tumor microenvironment of oral squamous cell carcinoma using multiplex immunofluorescence and image analysis approaches. Journal for ImmunoTherapy of Cancer 9, A984-A984. 10.1136/jitc-2021-SITC2021.938.
59. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., and Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications 11, 5120. 10.1038/s41467-020-18794-x.
60. Anderson, N.M., and Simon, M.C. (2020). The tumor microenvironment. Current Biology 30, R921-R925. https://doi.org/10.1016/j.cub.2020.06.081.
61. Bagati, A., Kumar, S., Jiang, P., Pyrdol, J., Zou, A.E., Godicelj, A., Mathewson, N.D., Cartwright, A.N.R., Cejas, P., Brown, M., et al. (2021). Integrin alphavbeta6-TGFbeta-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 39, 54-67 e59. 10.1016/j.ccell.2020.12.001.
62. Colak, S., and Ten Dijke, P. (2017). Targeting TGF-beta Signaling in Cancer. Trends Cancer 3, 56-71. 10.1016/j.trecan.2016.11.008.
63. Shi, X., Yang, J., Deng, S., Xu, H., Wu, D., Zeng, Q., Wang, S., Hu, T., Wu, F., and Zhou, H. (2022). TGF-beta signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 15, 135. 10.1186/s13045-022-01349-6.
64. Tamura, R., Tanaka, T., Akasaki, Y., Murayama, Y., Yoshida, K., and Sasaki, H. (2019). The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 37, 2. 10.1007/s12032-019-1329-2.
65. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., and Adema, G.J. (2013). The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105-115. 10.1111/imm.12036.
66. Li, Y.L., Zhao, H., and Ren, X.B. (2016). Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol Med 13, 206-214. 10.20892/j.issn.2095-3941.2015.0070.
67. Affo, S., Yu, L.X., and Schwabe, R.F. (2017). The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol 12, 153-186. 10.1146/annurev-pathol-052016-100322.
68. Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., Fearon, D., Greten, F.R., Hingorani, S.R., Hunter, T., et al. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer 20, 174-186. 10.1038/s41568-019-0238-1.
69. Lee, P.J., Sui, Y.H., Liu, T.T., Tsang, N.M., Huang, C.H., Lin, T.Y., Chang, K.P., and Liu, S.C. (2022). Epstein-Barr viral product-containing exosomes promote fibrosis and nasopharyngeal carcinoma progression through activation of YAP1/FAPalpha signaling in fibroblasts. J Exp Clin Cancer Res 41, 254. 10.1186/s13046-022-02456-5.
70. Pietila, M., Ivaska, J., and Mani, S.A. (2016). Whom to blame for metastasis, the epithelial-mesenchymal transition or the tumor microenvironment? Cancer Lett 380, 359-368. 10.1016/j.canlet.2015.12.033.
71. Peinado, H., Zhang, H., Matei, I.R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R.N., Bromberg, J.F., Kang, Y., et al. (2017). Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17, 302-317. 10.1038/nrc.2017.6.
72. Psaila, B., and Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9, 285-293. 10.1038/nrc2621.
73. Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827. 10.1038/nature04186.
74. Jin, M.Z., and Jin, W.L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 5, 166. 10.1038/s41392-020-00280-x.
75. Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L., Vatan, L., Shao, I., Szeliga, W., et al. (2017). Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18, 1332-1341. 10.1038/ni.3868.
76. Blank, C.U., and Enk, A. (2015). Therapeutic use of anti-CTLA-4 antibodies. Int Immunol 27, 3-10. 10.1093/intimm/dxu076.
77. Sarode, P., Zheng, X., Giotopoulou, G.A., Weigert, A., Kuenne, C., Gunther, S., Friedrich, A., Gattenlohner, S., Stiewe, T., Brune, B., et al. (2020). Reprogramming of tumor-associated macrophages by targeting beta-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. Sci Adv 6, eaaz6105. 10.1126/sciadv.aaz6105.
78. Marcovecchio, P.M., Thomas, G., and Salek-Ardakani, S. (2021). CXCL9-expressing tumor-associated macrophages: new players in the fight against cancer. J Immunother Cancer 9. 10.1136/jitc-2020-002045.
79. Chen, Y., Song, Y., Du, W., Gong, L., Chang, H., and Zou, Z. (2019). Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26, 78. 10.1186/s12929-019-0568-z.
80. Zhu, S., Luo, Z., Li, X., Han, X., Shi, S., and Zhang, T. (2021). Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 12, 54-64. 10.7150/jca.49692.
81. Wynn, T.A., Chawla, A., and Pollard, J.W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. 10.1038/nature12034.
82. Schmall, A., Al-Tamari, H.M., Herold, S., Kampschulte, M., Weigert, A., Wietelmann, A., Vipotnik, N., Grimminger, F., Seeger, W., Pullamsetti, S.S., and Savai, R. (2015). Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am J Respir Crit Care Med 191, 437-447. 10.1164/rccm.201406-1137OC.
83. Xiang, X., Wang, J., Lu, D., and Xu, X. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther 6, 75. 10.1038/s41392-021-00484-9.
84. Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., Modak, M., Carotta, S., Haslinger, C., Kind, D., et al. (2019). Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell 179, 829-845 e820. 10.1016/j.cell.2019.10.003.
85. Yeung, O.W., Lo, C.M., Ling, C.C., Qi, X., Geng, W., Li, C.X., Ng, K.T., Forbes, S.J., Guan, X.Y., Poon, R.T., et al. (2015). Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 62, 607-616. 10.1016/j.jhep.2014.10.029.
86. Guillot, A., and Tacke, F. (2019). Liver Macrophages: Old Dogmas and New Insights. Hepatol Commun 3, 730-743. 10.1002/hep4.1356.
87. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L., and Allavena, P. (2017). Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14, 399-416. 10.1038/nrclinonc.2016.217.
88. Molgora, M., Esaulova, E., Vermi, W., Hou, J., Chen, Y., Luo, J., Brioschi, S., Bugatti, M., Omodei, A.S., Ricci, B., et al. (2020). TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 182, 886-900 e817. 10.1016/j.cell.2020.07.013.
89. Gubin, M.M., Esaulova, E., Ward, J.P., Malkova, O.N., Runci, D., Wong, P., Noguchi, T., Arthur, C.D., Meng, W., Alspach, E., et al. (2018). High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy. Cell 175, 1443. 10.1016/j.cell.2018.11.003.
90. Spear, P., Barber, A., Rynda-Apple, A., and Sentman, C.L. (2012). Chimeric Antigen Receptor T Cells Shape Myeloid Cell Function within the Tumor Microenvironment through IFN-γ and GM-CSF. The Journal of Immunology 188, 6389-6398. 10.4049/jimmunol.1103019.
91. Chen, Y., Jin, H., Song, Y., Huang, T., Cao, J., Tang, Q., and Zou, Z. (2021). Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 236, 3445-3465. 10.1002/jcp.30139.
92. Zhang, W., Tian, J., and Hao, Q. (2014). HMGB1 combining with tumor-associated macrophages enhanced lymphangiogenesis in human epithelial ovarian cancer. Tumour Biol 35, 2175-2186. 10.1007/s13277-013-1288-8.
93. Ma, R.Y., Black, A., and Qian, B.Z. (2022). Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol 43, 546-563. 10.1016/j.it.2022.04.008.
94. Clark, N.M., Martinez, L.M., Murdock, S., deLigio, J.T., Olex, A.L., Effi, C., Dozmorov, M.G., and Bos, P.D. (2020). Regulatory T Cells Support Breast Cancer Progression by Opposing IFN-gamma-Dependent Functional Reprogramming of Myeloid Cells. Cell Rep 33, 108482. 10.1016/j.celrep.2020.108482.
95. Li, M., He, L., Zhu, J., Zhang, P., and Liang, S. (2022). Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 12, 85. 10.1186/s13578-022-00823-5.
96. Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11, 889-896. 10.1038/ni.1937.
97. Zhang, F., Parayath, N.N., Ene, C.I., Stephan, S.B., Koehne, A.L., Coon, M.E., Holland, E.C., and Stephan, M.T. (2019). Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 10, 3974. 10.1038/s41467-019-11911-5.
98. Tzetzo, S.L., and Abrams, S.I. (2021). Redirecting macrophage function to sustain their "defender" antitumor activity. Cancer Cell 39, 734-737. 10.1016/j.ccell.2021.03.002.
99. Chawla, H., Urs, A.B., and Augustine, J. (2017). Association of Macrophages With Angiogenesis in Oral Epithelial Dysplasia, Oral Verrucous Carcinoma, and Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Appl Immunohistochem Mol Morphol 25, 203-208. 10.1097/PAI.0000000000000284.
100. Kalogirou, E.M., Tosios, K.I., and Christopoulos, P.F. (2021). The Role of Macrophages in Oral Squamous Cell Carcinoma. Front Oncol 11, 611115. 10.3389/fonc.2021.611115.
101. You, Y., Tian, Z., Du, Z., Wu, K., Xu, G., Dai, M., Wang, Y., and Xiao, M. (2022). M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res 41, 10. 10.1186/s13046-021-02222-z.
102. Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nat Rev Cancer 13, 246-257. 10.1038/nrc3458.
103. Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J.T., Johnson, R.L., and Martin, J.F. (2013). Hippo signaling impedes adult heart regeneration. Development 140, 4683-4690. 10.1242/dev.102798.
104. Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the <em>Drosophila</em> Homolog of YAP. Cell 122, 421-434. 10.1016/j.cell.2005.06.007.
105. Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761. 10.1101/gad.1602907.
106. Johnson, R., and Halder, G. (2014). The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13, 63-79. 10.1038/nrd4161.
107. Wu, H., Liu, Y., Liao, Z., Mo, J., Zhang, Q., Zhang, B., and Zhang, L. (2022). The role of YAP1 in liver cancer stem cells: proven and potential mechanisms. Biomark Res 10, 42. 10.1186/s40364-022-00387-z.
108. Shibata, M., Ham, K., and Hoque, M.O. (2018). A time for YAP1: Tumorigenesis, immunosuppression and targeted therapy. Int J Cancer 143, 2133-2144. 10.1002/ijc.31561.
109. Wang, Y., Xu, X., Maglic, D., Dill, M.T., Mojumdar, K., Ng, P.K., Jeong, K.J., Tsang, Y.H., Moreno, D., Bhavana, V.H., et al. (2018). Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep 25, 1304-1317 e1305. 10.1016/j.celrep.2018.10.001.
110. Kim, N.G., and Gumbiner, B.M. (2015). Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210, 503-515. 10.1083/jcb.201501025.
111. Kim, N.-G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proceedings of the National Academy of Sciences 108, 11930-11935. doi:10.1073/pnas.1103345108.
112. Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., and Halder, G. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36. 10.1038/ncb1339.
113. Wang, L., Luo, J.Y., Li, B., Tian, X.Y., Chen, L.J., Huang, Y., Liu, J., Deng, D., Lau, C.W., Wan, S., et al. (2016). Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579-582. 10.1038/nature20602.
114. Moya, I.M., and Halder, G. (2019). Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20, 211-226. 10.1038/s41580-018-0086-y.
115. Lee, K.W., Lee, S.S., Kim, S.B., Sohn, B.H., Lee, H.S., Jang, H.J., Park, Y.Y., Kopetz, S., Kim, S.S., Oh, S.C., and Lee, J.S. (2015). Significant association of oncogene YAP1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin Cancer Res 21, 357-364. 10.1158/1078-0432.CCR-14-1374.
116. Seton-Rogers, S. (2014). All eyes on YAP1. Nature Reviews Cancer 14, 515-515. 10.1038/nrc3791.
117. Noguchi, S., Saito, A., Horie, M., Mikami, Y., Suzuki, H.I., Morishita, Y., Ohshima, M., Abiko, Y., Mattsson, J.S., Konig, H., et al. (2014). An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clin Cancer Res 20, 4660-4672. 10.1158/1078-0432.CCR-13-3328.
118. Lamar, J.M., Stern, P., Liu, H., Schindler, J.W., Jiang, Z.-G., and Hynes, R.O. (2012). The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences 109, E2441-E2450. doi:10.1073/pnas.1212021109.
119. Kapoor, A., Yao, W., Ying, H., Hua, S., Liewen, A., Wang, Q., Zhong, Y., Wu, C.J., Sadanandam, A., Hu, B., et al. (2014). Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185-197. 10.1016/j.cell.2014.06.003.
120. Nishio, M., Sugimachi, K., Goto, H., Wang, J., Morikawa, T., Miyachi, Y., Takano, Y., Hikasa, H., Itoh, T., Suzuki, S.O., et al. (2016). Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A 113, E71-80. 10.1073/pnas.1517188113.
121. Wei, C., and Li, X. (2020). Verteporfin inhibits cell proliferation and induces apoptosis in different subtypes of breast cancer cell lines without light activation. BMC Cancer 20, 1042. 10.1186/s12885-020-07555-0.
122. Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., Guerrero-Juarez, C.F., Yamaga, K., Pandori, W., Hsieh, J.Y., et al. (2020). YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci Adv 6. 10.1126/sciadv.abb8471.
123. Liu, M., Yan, M., Lv, H., Wang, B., Lv, X., Zhang, H., Xiang, S., Du, J., Liu, T., Tian, Y., et al. (2020). Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep 32, 107990. 10.1016/j.celrep.2020.107990.
124. Zhou, X., Franklin, R.A., Adler, M., Carter, T.S., Condiff, E., Adams, T.S., Pope, S.D., Philip, N.H., Meizlish, M.L., Kaminski, N., and Medzhitov, R. (2022). Microenvironmental sensing by fibroblasts controls macrophage population size. Proc Natl Acad Sci U S A 119, e2205360119. 10.1073/pnas.2205360119.
125. Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., and Sahai, E. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15, 637-646. 10.1038/ncb2756.
126. Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., Zhang, B., Meng, Q., Yu, X., and Shi, S. (2021). Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer 20, 131. 10.1186/s12943-021-01428-1.
127. Zanconato, F., Cordenonsi, M., and Piccolo, S. (2016). YAP/TAZ at the Roots of Cancer. Cancer Cell 29, 783-803. https://doi.org/10.1016/j.ccell.2016.05.005.
128. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8.
129. Wang, X., and Cairns, M.J. (2014). SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing. Bioinformatics 30, 1777-1779. 10.1093/bioinformatics/btu090.
130. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529. 10.1016/j.cell.2021.04.048.
131. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8, 329-337 e324. 10.1016/j.cels.2019.03.003.
132. Tickle, T.a.T., Itay and Georgescu, Christophe and, and Brown, M.a.H., Brian (2019). inferCNV of the Trinity CTAT Project.
133. Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.H., Myung, P., Plikus, M.V., and Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nat Commun 12, 1088. 10.1038/s41467-021-21246-9.
134. McClelland, M., Zhao, L., Carskadon, S., and Arenberg, D. (2009). Expression of CD74, the receptor for macrophage migration inhibitory factor, in non-small cell lung cancer. Am J Pathol 174, 638-646. 10.2353/ajpath.2009.080463.
135. Zhen, A., Krutzik, S.R., Levin, B.R., Kasparian, S., Zack, J.A., and Kitchen, S.G. (2014). CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol 88, 9934-9946. 10.1128/JVI.00616-14.
136. Holling, T.M., Schooten, E., and van Den Elsen, P.J. (2004). Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 65, 282-290. 10.1016/j.humimm.2004.01.005.
137. Chen, S., Saeed, A., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., Rao, L., and Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 8, 207. 10.1038/s41392-023-01452-1.
138. Naserian, S., Abdelgawad, M.E., Afshar Bakshloo, M., Ha, G., Arouche, N., Cohen, J.L., Salomon, B.L., and Uzan, G. (2020). The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Communication and Signaling 18, 94. 10.1186/s12964-020-00564-3.
139. Leibovich, S.J., Polverini, P.J., Shepard, H.M., Wiseman, D.M., Shively, V., and Nuseir, N. (1987). Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329, 630-632. 10.1038/329630a0.
140. Shen, Y.W., Zhou, Y.D., Chen, H.Z., Luan, X., and Zhang, W.D. (2021). Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 7, 511-524. 10.1016/j.trecan.2020.12.001.
141. Zou, X., Tang, X.Y., Qu, Z.Y., Sun, Z.W., Ji, C.F., Li, Y.J., and Guo, S.D. (2022). Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 202, 539-557. 10.1016/j.ijbiomac.2022.01.113.
142. Kim, S.Y., and Nair, M.G. (2019). Macrophages in wound healing: activation and plasticity. Immunol Cell Biol 97, 258-267. 10.1111/imcb.12236.
143. Kambayashi, T., and Laufer, T.M. (2014). Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews Immunology 14, 719-730. 10.1038/nri3754.
144. Axelrod, M.L., Cook, R.S., Johnson, D.B., and Balko, J.M. (2019). Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin Cancer Res 25, 2392-2402. 10.1158/1078-0432.Ccr-18-3200.
145. Xu, B., Salama, A.M., Valero, C., Yuan, A., Khimraj, A., Saliba, M., Zanoni, D.K., Ganly, I., Ghossein, R., Patel, S.G., and Katabi, N. (2021). Histologic evaluation of host immune microenvironment and its prognostic significance in oral tongue squamous cell carcinoma: a comparative study on lymphocytic host response (LHR) and tumor infiltrating lymphocytes (TILs). Pathol Res Pract 228, 153473. 10.1016/j.prp.2021.153473.
146. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J.T., and Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233, 6425-6440. 10.1002/jcp.26429.
147. Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis, 2 Edition (Springer International Publishing). |