![]() |
|
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:68 、訪客IP:3.16.139.90
姓名 庫可妮(Coni Anggie Kurniasari) 查詢紙本館藏 畢業系所 生命科學系 論文名稱 耐旱性對比茶樹品種干旱響應基因的差異表達模式
(Differential expression patterns of drought-responsive genes in tea cultivars with contrasting drought tolerance)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 由於近年來越來越頻繁且越嚴重的乾旱,多年生茶樹 (Camellia sinensis (L.) O. Kuntze) 面臨著產量和品質下降的重大挑戰。應對此威脅的永續性手段之一為開發較為抗旱的新茶樹品種,而了解茶樹反應乾旱壓力的分子機制則對促進新品種的培育至關重要。我的實驗室夥伴黎黃魁元已使用了RNA-seq對臺茶12號、臺茶19號、臺茶22號和青心烏龍四種臺灣茶品種進行了乾旱壓力下的轉錄組反應比對。為了驗證該分析結果,本研究使用RT-qPCR技術偵測在四個茶樹品種正常給水與乾旱壓力下,九個與乾旱耐受差異性可能有相關的基因之表現量差異,此九基因所轉譯出之蛋白質包含參與信號傳遞的蛋白激酶 MPK3、催化製造活性氧化物(ROS)的氧化酶 RBOH、ABC運輸蛋白ABCG21、NAC轉錄因子編碼基因NAC083、MYB轉錄因子編碼基因MYBH/KUA1、參與酚類原生代謝途徑的酶編碼基因C4H、參與木質素生物合成的酵素 HCT 和 F5H、以及參與類黃酮生物合成的酵素F3’H。結果顯示在乾旱壓力下,根據RT-qPCR分析結果,在TTES No. 22中,MPK3和RBOH呈顯著上調。在臺茶12號 和臺茶22號中,ABCG21、NAC083、F3’H、HCT和F5H呈顯著上調。MYBH/KUA1和C4H在四個茶樹品種中未表達差異。RT-qPCR分析的結果與RNA-seq分析的結果基本一致。此研究驗證了茶樹抗旱反應的轉錄組分析結果,並具有輔助較耐旱茶樹育種分子標誌的開發潛能。 摘要(英) The perennial tea plants (Camellia sinensis (L.) O. Kuntze) are imposed by a significant challenge of deteriorating yield and quality due to a more frequent and severe drought in recent years. Understanding the molecular mechanisms of drought stress response in tea plants is important to facilitate new tea cultivar development as one sustainable approach for coping with this threat. Nguyen Hoang Khoi Le, a labmate of mine, has investigated the transcriptomic response to drought stress in four genetically related Taiwan tea cultivars with contrasting drought tolerance (TTES No. 12, TTES No. 19, TTES No. 22, and Chin-Shin-Oolong) by using RNA-seq analysis. In this study, I aimed to confirm the RNA-seq analysis results using the RT-qPCR method. Several genes putatively associating to differential tolerance to drought were tested, including MPK3 which encodes a protein kinase involved in signal transduction, RBOH encodes oxidase to produce reactive oxygen species, ABCG21 encodes ATP-binding cassette transporter, NAC083 encodes the NAC transcription factor, MYBH/KUA1 encodes an MYB transcription factor, C4H encodes an enzyme involved in phenylpropanoid biosynthesis, HCT and F5H encode enzymes involved in lignin biosynthesis, and F3’H encodes an enzyme involved in flavonoid biosynthesis. According to the RT-qPCR analysis, MPK3 and RBOH were significantly up-regulated in TTES No. 22. ABCG21, NAC083, F3’H, HCT, and F5H were significantly up-regulated in TTES No. 12 and TTES No. 22. MYBH/KUA1 and C4H were not differentially expressed in four tea cultivars. The results of RT-qPCR analysis were largely consistent with the result of RNA-seq analysis. These findings would shed light on the molecular mechanism underlying drought resistance in the tea plants, highlighting potential gene targets for drought-tolerant tea cultivars breeding development. 關鍵字(中) ★ 多年生茶樹
★ 耐旱
★ RT-qPCR關鍵字(英) ★ Camellia sinensis
★ drought tolerance
★ RT-qPCR論文目次 中文摘要.......................................................................................................................... i
ABSTRACT..................................................................................................................... ii
ACKNOWLEDGMENT.................................................................................................. iii
TABLE OF CONTENTS................................................................................................. iv
LIST OF FIGURES......................................................................................................... vi
LIST OF TABLES........................................................................................................... viii
CHAPTER I – INTRODUCTION................................................................................... 1
1-1 Tea Plant (Camellia sinensis (L.) O. Kuntze)...................................................... 1
1-1-1 Drought Stress as Major Threat of Tea Crop.................................................... 1
1-1-2 Tea Breeding Cultivation.................................................................................. 2
1-2 Drought Response Mechanism In Plants.............................................................. 3
1-2-1 Morphological Change...................................................................................... 4
1-2-2 Physiological Change........................................................................................ 4
1-2-3 Molecular Mechanism of Drought Response.................................................... 6
1-3 Objectives of This Study...................................................................................... 8
CHAPTER II – MATERIAL AND METHOD............................................................... 10
2-1 Tea Leaves Collection.......................................................................................... 10
2-2 RNA extraction..................................................................................................... 10
2-3 cDNA Synthesis................................................................................................... 10
2-4 RT-qPCR Analysis............................................................................................... 10
2-5 List of the Primer.................................................................................................. 11
CHAPTER III – RESULTS............................................................................................. 13
3-1 RNA Extraction Quality....................................................................................... 13
3-2 Expression Pattern of Drought-Responsive Genes in Tea Plant.......................... 14
3-2-1 Expression Pattern of MPK3............................................................................. 15
3-2-2 Expression Pattern of RBOH............................................................................ 16
3-2-3 Expression Pattern of ABCG21........................................................................ 17
3-2-4 Expression Pattern of NAC083......................................................................... 18
3-2-5 Expression Pattern of MYBH/KUA1................................................................ 19
3-2-6 Expression Pattern of C4H................................................................................ 20
3-2-7 Expression Pattern of F3’H............................................................................... 21
3-2-8 Expression Pattern of HCT............................................................................... 22
3-2-9 Expression Pattern of F5H................................................................................ 23
CHAPTER IV–DISCUSSION AND CONCLUSION.................................................... 25
4-1 MPK3 Expression Pattern in Drought Tolerance of Tea Plants........................... 25
4-2 RBOH Expression Pattern in Drought Tolerance of Tea Plants........................... 26
4-3 ABCG21 Expression Pattern in Drought Tolerance of Tea Plants....................... 27
4-4 NAC083 Expression Pattern in Drought Tolerance of Tea Plants........................ 27
4-5 MYBH/KUA1 Expression Pattern in Drought Tolerance of Tea Plants............... 28
4-6 C4H Expression Pattern in Drought Tolerance of Tea Plants.............................. 28
4-7 F3’H Expression Pattern in Drought Tolerance of Tea Plants............................. 29
4-8 HCT Expression Pattern in Drought Tolerance of Tea Plants.............................. 29
4-9 F5H Expression Pattern in Drought Tolerance of Tea Plants.............................. 30
REFERENCES................................................................................................................. 32
ABBREVIATIONS......................................................................................................... 35
APPENDIX A.................................................................................................................. 36參考文獻 [1] U. Agarwal, et al. “Review on Camellia sinensis –Nature’s Gift”, International Journal of Pharmacognosy and Phytochemical Research, 9, 8, 2017, 1119-1126.
[2] Y. Li, et al. “Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis”, BMC Genomics, 20, 624, 2019, 1-17.
[3] L. Chen, Z. Apostolides, & Z.M. Chen. Global Tea Breeding: Achievements, Challenges and Perspectives. Hangzhou: Zhejiang University Press, 2012.
[4] C. Wang, et al.” Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research”, Applied Sciences, 12, 5874, 2022, 1-20.
[5] R. Boehm, et al. “Association between Empirically Estimated Monsoon Dynamics and Other Weather Factors and Historical Tea Yields in China: Results from a Yield Response Model”, Climate, 4, 20, 2016, 1-19.
[6] S. Ahmed, et al. “Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China”, PloS ONE, 9, 10, 2014, 1-13.
[7] United States Department of Agriculture. “Taiwan Drought Results in Rice Area Reduction and Crop Loss”, Report Number: TW2021-0037, 2021.
[8] M.U. Gul, et al. “Hydrotropism: Understanding the Impact of Water on Plant Movement and Adaptation”, Water, 15, 567, 2023, 1-16.
[9] O. Ahluwalia, P.C. Singh, & R. Bhatia. “A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria”, Resources, Environment, and Sustainability, 5, 100032, 2021, 1-13.
[10] M. Farooq, et al. Plant Responses to Drought Stress. Berlin: Springer. 2012.
[11] W. Han, X. Li, and G.J. Ahammed. Stress Physiology of Tea in the Face of Climate Change. Singapore: Springer. 2018.
[12] M. Hasanuzzaman, M. Zhou, and S. Shabala. “How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance?”, Plants, 12, 494, 2023, 1-19.
[13] J. Dumanovic, et al. “The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview”, Frontiers in Plant Science, 11, 552969, 2021, 1-13.
[14] M.M. Aslam, et al. “Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants”, International Journal of Molecular Sciences, 23, 1084, 2022, 1-21.
[15] M. Kumar, et al. “Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants”, International Journal of Molecular Sciences, 22, 9108, 2021, 1-23.
[16] B. Yadav, et al. “Secondary metabolites in the drought stress tolerance of crop plants: A review”, Gene Reports, 23, 101040, 2021, 1-15.
[17] X. Yu, et al.” Metabolite signatures of diverse Camellia sinensis tea populations”, Nature Communications, 11, 5586, 2020, 1-14.
[18] Y. Kamiyama, S. Katagiri, and T. Umezawa. “Growth Promotion or Osmotic Stress Response: How SNF1-Related Protein Kinase 2 (SnRK2) Kinases Are Activated and Manage Intracellular Signaling in Plants”, 10, 1443, Plants, 2021, 1-19.
[19] F. Soma, et al. “Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems”, Plants, 10, 756, 2021, 1-16.
[20] Z. Lin, et al. “Initiation and amplification of SnRK2 activation in abscisic acid signaling”, Nature Communications, 12, 2456, 2021, 1-13.
[21] J.K. Zhu. “Abiotic Stress Signaling and Responses in Plants”, Cell, 167, 2016, 313-324.
[22] H. Zhang, Y. Zhao, and J.K. Zhu. “Thriving under Stress: How Plants Balance Growth and the Stress Response”, Developmental Cell, 55, 2020, 529-545.
[23] N. Fabregas, T. Yoshida, and A.R. Fernie. “Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants”, Nature Communications, 11, 6184, 2020, 1-11.
[24] A. Daszkowska-Golec and I. Szarejko. “Open or close the gate– stomata action under the control of phytohormones in drought stress conditions”, Frontiers in Plant Science, 4, 138, 2013, 1-16.
[25] Y. Osakabe, et al. “Response of plants to water stress”, Frontiers in Plant Science, 5, 86, 2014, 1-8.
[26] J. Shen, et al. “The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice”, Scientific Reports, 7, 40641, 2017, 1-16.
[27] R. Nakabayashi, et al. “Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids”, The Plant Journal, 77, 2014, 367-379.
[28] H. Gu, et al. “Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants”, Scientific Reports, 10, 15504, 2020, 1-11.
[29] P. Jagodzik, et al. “Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling”, Frontiers in Plant Science, 9, 1387, 2018, 1-26.
[30] M. Zhang and S. Zhang. “Mitogen‐activated protein kinase cascades in plant signaling”, Journal of Integrative Plant Biology, 64, 2022, 301-341.
[31] H. Ma, et al. “MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice”, The Plant Journal, 92, 2017, 557-570.
[32] S. Asai, K. Ohta, and H. Yoshioka. “MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana”, The Plant Cell, 20 2008, 1390-1406.
[33] X. Wang, et al. “The plasma membrane NADPH oxidase OsRBOHA plays a crucial role in developmental regulation and drought-stress response in rice”, Physiologia Plantarum, 2015.
[34] T. Kuromori, et al. “Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation”, Scientific reports, 7, 12501, 2017.
[35] T. Kuromori, E. Sugimoto, and K. Shinozaki. “Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility”, The Plant Journal, 67, 2011, 885-894.
[36] S. Matsuda, et al. “Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5”, Molecular Plant, 9, 2016, 417-427.
[37] X. Zhang, et al. “Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance”, Frontiers in Plant Science, 13, 2022, 1-17.
[38] Ambawat, et al. “MYB transcription factor genes as regulators for plant responses: an overview”, Physiol Mol Biol plants, 19, 3, 2013, 307-321.
[39] Y. Kwon, et al. “A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation”, Journal of Experimental Botany, 64, 12, 2013, 3911-3922.
[40] D. Lu, et al. “Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development”, Nature Communications, 5, 3767, 2014, 1-9.
[41] C.K. Huang, et al. “A single‑repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis”, Plant Molecular Biology, 2015.
[42] K. Singh, et al. “Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea”, Funct Integr Genomics, 9, 2008, 125-134.
[43] W. Wang, et al. “Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality”, Frontiers in Plant Science, 7, 385, 2016, 1-13.
[44] J. Liu, et al. “Molecular and Metabolic Changes under Environmental Stresses: The Biosynthesis of Quality Components in Preharvest Tea Shoots”, Horticulturae, 8, 173, 2022, 1-20.
[45] C.H.Sun, C.Y. Yang, and J.T.C. Tzen. “Molecular Identification and Characterization of Hydroxycinnamoyl Transferase in Tea Plants (Camellia sinensis L.)”, International Journal of Molecular Sciences, 19, 3938, 2018, 1-11.
[46] S.J. Choi, et al. “Modulation of lignin biosynthesis for drought tolerance in plants”, Frontiers in Plant Science, 14, 2023, 1-14.
[47] C. Hori, et al. “Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa”, Plant Biotechnology (Tokyo), 37, 3, 2020, 273-283.
[48] N.Z. Ergen, et al. “Transcriptome pathways unique to dehydration tolerant relatives of modern wheat”, Funct Integr Genomics, 9, 3, 2009, 377-396.指導教授 葉淑丹(Shu-Dan Yeh) 審核日期 2023-7-24 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare