參考文獻 |
1.Berthiaume, F., T.J. Maguire, and M.L. Yarmush, Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, 2011. 2: p. 403-30.
2.Imran, S.A.M., M.H. MHA, A.A.N. Khairul Bariah, W.S. Wan Kamarul Zaman, and F. Nordin, Regenerative Medicine Therapy in Malaysia: An Update. Front Bioeng Biotechnol, 2022. 10: p. 789644.
3.Edgar, L., T. Pu, B. Porter, J.M. Aziz, C. La Pointe, A. Asthana, and G. Orlando, Regenerative medicine, organ bioengineering and transplantation. Br J Surg, 2020. 107(7): p. 793-800.
4.Terzic, A., M.A. Pfenning, G.J. Gores, and C.M. Harper, Jr., Regenerative Medicine Build-Out. Stem Cells Transl Med, 2015. 4(12): p. 1373-9.
5.Schnitzler, A.C., A. Verma, D.E. Kehoe, D. Jing, J.R. Murrell, K.A. Der, M. Aysola, P.J. Rapiejko, S. Punreddy, and M.S. Rook, Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochemical Engineering Journal, 2016. 108: p. 3-13.
6.細胞治療流程. Available from: https://www.imecint.com/en/imec-magazine/imec-magazine-february-2018/what-chip-technology-can-do-for-cell-therapy.
7.細胞治療市場. Available from: https://www.precedenceresearch.com/cell-therapy-market.
8.Pegg, D.E., Principles of cryopreservation.
Cryopreservation and freeze-drying protocols, 2007: p. 39-57.
9.Murray, K.A. and M.I. Gibson, Chemical approaches to cryopreservation. Nat Rev Chem, 2022. 6(8): p. 579-593.
10.冷凍細胞:過程概述. Available from: https://cytologicsbio.com/how-to-freeze-cells-3-essential-considerations/.
11.Han, B. and J.C. Bischof, Direct cell injury associated with eutectic crystallization during freezing. Cryobiology, 2004. 48(1): p. 8-21.
12.Fowler, A. and M. Toner, Cryo-injury and biopreservation. Ann N Y Acad Sci, 2005. 1066: p. 119-35.
13.Raju, R., S.J. Bryant, B.L. Wilkinson, and G. Bryant, The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj, 2021. 1865(1): p. 129749.
14.McLellan, M.R. and J.G. Day, Cryopreservation and freeze-drying protocols. Introduction. Methods Mol Biol, 1995. 38: p. 1-5.
15.Verheijen, M., M. Lienhard, Y. Schrooders, O. Clayton, R. Nudischer, S. Boerno, B. Timmermann, N. Selevsek, R. Schlapbach, H. Gmuender, S. Gotta, J. Geraedts, R. Herwig, J. Kleinjans, and F. Caiment, DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci Rep, 2019. 9(1): p. 4641.
16.Shu, Z., S. Heimfeld, and D. Gao, Hematopoietic SCT with cryopreserved grafts: adverse reactions after transplantation and cryoprotectant removal before infusion. Bone Marrow Transplant, 2014. 49(4): p. 469-76.
17.Maral, S., M. Albayrak, C. Pala, A. Yildiz, O. Sahin, and H.B. Ozturk, Dimethyl Sulfoxide-Induced Tonic-Clonic Seizure and Cardiac Arrest During Infusion of Autologous Peripheral Blood Stem Cells. Cell Tissue Bank, 2018. 19(4): p. 831-832.
18.Rowley, S., B. MacLeod, S. Heimfeld, L. Holmberg, and W. Bensinger, Severe central nervous system toxicity associated with the infusion of cryopreserved PBSC components. Cytotherapy, 1999. 1(4): p. 311-7.
19.Zenhäusern, R., A. Tobler, L. Leoncini, O.M. Hess, and P. Ferrari, Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol, 2000. 79(9): p. 523-6.
20.Benekli, M., B. Anderson, D. Wentling, S. Bernstein, M. Czuczman, and P. McCarthy, Severe respiratory depression after dimethylsulphoxide-containing autologous stem cell infusion in a patient with AL amyloidosis. Bone Marrow Transplant, 2000. 25(12): p. 1299-301.
21.Zambelli, A., G. Poggi, G. Da Prada, P. Pedrazzoli, A. Cuomo, D. Miotti, C. Perotti, P. Preti, and G. Robustelli della Cuna, Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res, 1998. 18(6b): p. 4705-8.
22.Hoyt, R., J. Szer, and A. Grigg, Neurological events associated with the infusion of cryopreserved bone marrow and/or peripheral blood progenitor cells. Bone Marrow Transplant, 2000. 25(12): p. 1285-7.
23.Foïs, E., M. Desmartin, S. Benhamida, F. Xavier, V. Vanneaux, D. Rea, J.P. Fermand, B. Arnulf, N. Mounier, M. Ertault, J.P. Lotz, L. Galicier, E. Raffoux, M. Benbunan, J.P. Marolleau, and J. Larghero, Recovery, viability and clinical toxicity of thawed and washed haematopoietic progenitor cells: analysis of 952 autologous peripheral blood stem cell transplantations. Bone Marrow Transplant, 2007. 40(9): p. 831-5.
24.Best, B.P., Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res, 2015. 18(5): p. 422-36.
25.Heydarzadeh, S., S. Kheradmand Kia, S. Boroomand, and M. Hedayati, Recent developments in cell shipping methods. Biotechnol Bioeng, 2022. 119(11): p. 2985-3006.
26.Dewhurst, R.M., E. Molinari, and J.A. Sayer, Cell preservation methods and its application to studying rare disease. Mol Cell Probes, 2021. 56: p. 101694.
27.Kuo, C.-T., J.-Y. Wang, Y.-F. Lin, A.M. Wo, B.P. Chen, and H. Lee, Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Scientific reports, 2017. 7(1): p. 4363.
28.Aijian, A.P. and R.L. Garrell, Digital microfluidics for automated hanging drop cell spheroid culture. Journal of laboratory automation, 2015. 20(3): p. 283-295.
29.Foty, R., A simple hanging drop cell culture protocol for generation of 3D spheroids. JoVE (Journal of Visualized Experiments), 2011(51): p. e2720.
30.Jiang, B., L. Yan, Z. Miao, E. Li, K.H. Wong, and R.H. Xu, Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials, 2017. 133: p. 275-286.
31.Damala, M., S. Swioklo, M.A. Koduri, N.S. Mitragotri, S. Basu, C.J. Connon, and V. Singh, Encapsulation of human limbus-derived stromal/mesenchymal stem cells for biological preservation and transportation in extreme Indian conditions for clinical use. Sci Rep, 2019. 9(1): p. 16950.
32.Cuadros, T.R., A.A. Erices, and J.M. Aguilera, Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater, 2015. 46: p. 331-42.
33.Zimmermann, U., G. Klöck, K. Federlin, K. Hannig, M. Kowalski, R.G. Bretzel, A. Horcher, H. Entenmann, U. Sieber, and T. Zekorn, Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis, 1992. 13(5): p. 269-74.
34.Orive, G., S.K. Tam, J.L. Pedraz, and J.P. Hallé, Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials, 2006. 27(20): p. 3691-700.
35.Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Prog Polym Sci, 2012. 37(1): p. 106-126.
36.海藻酸鹽化學式. Available from: https://zh.wikipedia.org/wiki/%E6%B5%B7%E8%97%BB%E9%85%B8.
37.Hu, T. and A.C.Y. Lo, Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel), 2021. 13(11).
38.Sun, J. and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials (Basel), 2013. 6(4): p. 1285-1309.
39.Wang, X., J. Zhu, X. Liu, H.J. Zhang, and X. Zhu, Novel gelatin-based eco-friendly adhesive with a hyperbranched cross-linked structure. Industrial & Engineering Chemistry Research, 2020. 59(13): p. 5500-5511.
40.Zheng, Y., Y. Liang, D. Zhang, X. Sun, L. Liang, J. Li, and Y.N. Liu, Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega, 2018. 3(5): p. 4766-4775.
41.Wang, X., Q. Ao, X. Tian, J. Fan, H. Tong, W. Hou, and S. Bai, Gelatin-based hydrogels for organ 3D bioprinting. Polymers, 2017. 9(9): p. 401.
42.Foox, M. and M. Zilberman, Drug delivery from gelatin-based systems. Expert Opin Drug Deliv, 2015. 12(9): p. 1547-63.
43.明膠. Available from: https://chembam.com/resources-for-students/the-chemistry-of/gelatin/.
44.細胞保存市場. Available from: https://www.transparencymarketresearch.com/cell-tissue-preservation-market.html.
45.Andreazza, R., A. Morales, S. Pieniz, and J. Labidi, Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers (Basel), 2023. 15(4).
46.Adler, S., C. Pellizzer, M. Paparella, T. Hartung, and S. Bremer, The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro, 2006. 20(3): p. 265-71.
47.Murray, K.A., R.M.F. Tomás, and M.I. Gibson, Low DMSO Cryopreservation of Stem Cells Enabled by Macromolecular Cryoprotectants. ACS Appl Bio Mater, 2020. 3(9): p. 5627-5632.
48.Swioklo, S., A. Constantinescu, and C.J. Connon, Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells. Stem Cells Transl Med, 2016. 5(3): p. 339-49.
49.Kofanova, O.A., K. Davis, B. Glazer, Y. De Souza, J. Kessler, and F. Betsou, Viable mononuclear cell stability study for implementation in a proficiency testing program: impact of shipment conditions. Biopreserv Biobank, 2014. 12(3): p. 206-16.
50.Ke, C.-J., K.-H. Chiu, C.-Y. Chen, C.-H. Huang, and C.-H. Yao, Alginate-gelatin based core-shell capsule enhances the osteogenic potential of human osteoblast-like MG-63 cells. Materials & Design, 2021. 210: p. 110109.
51.SGS體外細胞毒性試驗報告. Available from: http://www.zigsheng.com/wpcontent/uploads/2021/11/SGS%E9%AB%94%E5%A4%96%E7%B4%B0%E8%83%9E%E6%AF%92%E6%80%A7%E8%A9%A6%E9%A9%97%E5%A0%B1%E5%91%8A.pdf. |