博碩士論文 109451001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.129.67.248
姓名 吳岱蓉(TAI-JUNG WU)  查詢紙本館藏   畢業系所 企業管理學系在職專班
論文名稱 運用文字探勘從網路新聞探討台灣COVID-19疫情期間民生物資與確診人數發展關係
(Exploring the Relationship between the Development of Daily Necessities and Confirmed Cases during the COVID-19 Epidemic in Taiwan from Online News Based on Text Mining)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-13以後開放)
摘要(中) 自2019年底起,新冠肺炎病毒COVID-19疫情開始爆發,在全世界範圍各方面都受到了巨大的影響與改變。在疫情期間,每當爆發大規模感染時,消費者都會產生恐慌性或預防性的大量消費和囤貨行為。因此本論文透過文字探勘方法,分析台灣疫情期間的新聞關鍵字,與使用Google Trends分析關鍵字熱度趨勢變化與確診人數之間的相關分析,並使用互相關分析不同物資關鍵字的熱度與確診人數間的延遲關係。透過延遲處理後,能發現民生物資與防疫物資在疫情不同發展階與確診人數間會有不同程度的延遲現象。與疫情相關新聞中的關鍵字和Google Trends上的關鍵字熱度趨勢有高度相關且同步的現象。本論文透過結合文字探勘方法與Google Trends關鍵字熱門度趨勢工具,能夠有效且快速的偵測到疫情期間不同物資需求的變化。
摘要(英) Since the outbreak of COVID-19 at the end of 2019, the world has been greatly affected and changed in all aspects. During the epidemic, whenever a large-scale infection breaks out, consumers will have panic or precautionary large-scale consumption and hoarding behaviors. Therefore, this paper uses text mining methods to analyze news keywords during the epidemic in Taiwan, and uses Google Trends to analyze the correlation between keywords popularity trends and the number of confirmed cases, and uses cross-correlation to analyze the delay between the trends of different keywords of daily necessities and the number of confirmed cases. After delayed processing, it can be found that there will be varying degrees of delays between the development stages of the epidemic and the number of confirmed cases between the people′s daily necessities and epidemic prevention supplies. The keywords in news related to the epidemic are highly correlated and synchronized with the keyword popularity trend on Google Trends. In this paper, by combining the text mining method and the Google Trends tool, it can effectively and quickly detect changes in the demand for different necessities and supplies during the epidemic.
關鍵字(中) ★ COVID-19
★ 文字探勘
★ Google Trends
★ 民生物資
★ 延遲分析
關鍵字(英) ★ COVID-19
★ text mining
★ Google Trends
★ daily necessities
★ delay analysis
論文目次 目錄
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 台灣COVID-19疫情 3
2.2 文字探勘 4
2.3 Google Trends搜尋趨勢 6
第三章 研究方法 10
3.1 資料蒐集與清理 11
3.2 資料分析 13
第四章 研究分析與結果 14
4.1 高頻率疫情物資 14
4.2 新聞疫情物資詞頻與確診人數相關分析 15
4.3 Google Trends疫情物資熱門度與確診人數相關分析 21
4.4 新聞疫情物資詞頻與Google Trends疫情物資熱門度相關分析 25
第五章 研究結論與建議 30
參考文獻 32

參考文獻 Berry, M., & Castellanos, M. (2004). Text Mining: Clustering, Classification and Retrieval. In: New York: Springer.
Bourke, P. (1996). Cross correlation. Cross Correlation”, Auto Correlation—2D Pattern Identification.
Carneiro, H. A., & Mylonakis, E. (2009). Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clinical infectious diseases, 49(10), 1557-1564.
Chan, J. F.-W., Yip, C. C.-Y., To, K. K.-W., Tang, T. H.-C., Wong, S. C.-Y., Leung, K.-H., Fung, A. Y.-F., Ng, A. C.-K., Zou, Z., & Tsoi, H.-W. (2020). Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of clinical microbiology, 58(5), e00310-00320.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57-57.
Fung, G. P. C., Yu, J. X., & Lam, W. (2003). Stock prediction: Integrating text mining approach using real-time news. 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings.,
Glasbey, J., Nepogodiev, D., Simoes, J., Omar, O., Li, E., Venn, M., Chaar, M., Chaudhry, D., Desai, A., & Edwards, J. (2021). Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: an international, multicenter, comparative cohort study. Journal of Clinical Oncology, 39(1).
Laato, S., Islam, A. N., Farooq, A., & Dhir, A. (2020). Unusual purchasing behavior during the early stages of the COVID-19 pandemic: The stimulus-organism-response approach. Journal of Retailing and Consumer Services, 57, 102224.
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. (2019). Siamrpn++: Evolution of siamese visual tracking with very deep networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Newman, N., Fletcher, R., & Schulz, A. A. (2021). S., Robertson, CT, & Nielsen, RK (2021). Reuters Institute Digital News Report 2021. Reuters Institute for the Study of Journalism. https://reutersinstitute. politics. ox. ac. uk/sites/default/files/2021-06/Digital_News_Report_2021_FINAL. pdf.
Ortiz-Martínez, Y., Garcia-Robledo, J. E., Vásquez-Castañeda, D. L., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). Can Google® trends predict COVID-19 incidence and help preparedness? The situation in Colombia. Travel medicine and infectious disease, 37, 101703.
Pelat, C., Turbelin, C., Bar-Hen, A., Flahault, A., & Valleron, A.-J. (2009). More diseases tracked by using Google Trends. Emerging infectious diseases, 15(8), 1327.
Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical review letters, 100(8), 084102.
Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3(1), 1-6.
Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5707-5719.
Seung-PyoJun, Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69-87.
Sulyok, M., Ferenci, T., & Walker, M. (2021). Google Trends Data and COVID‐19 in Europe: Correlations and model enhancement are European wide. Transboundary and Emerging Diseases, 68(4), 2610-2615.
Welch, L. (1974). Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Transactions on Information theory, 20(3), 397-399.
Yoo, J.-C., & Han, T. H. (2009). Fast normalized cross-correlation. Circuits, systems and signal processing, 28(6), 819-843.
Zhang, C. (2008). Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 4(3), 1169-1180.
Zheng, R., Shou, B., & Yang, J. (2021). Supply disruption management under consumer panic buying and social learning effects. Omega, 101, 102238.
王慧蘭. (2021). 台灣新冠肺炎網路新聞報導之大數據分析—以某群聚感染事件為例.
余清祥, & 葉昱廷. (2020). 以文字探勘技術分析臺灣四大報文字風格. 數位典藏與數位人文(6), 69-96.
李揚生. (2017). 文字探勘與財經新聞: 新聞是否會改變市場行為.
張昱維, 蔡易昌, 楊惠春, & 樊聖. (2021). Google Trends 搜尋關鍵字熱度與 COVID-19 疫情趨勢的相關性-以臺灣為例的網路行為觀察性研究. 醫學與健康期刊, 10(3), 17-31.
陳世榮. (2015). 社會科學研究中的文字探勘應用: 以文意為基礎的文件分類及其問題. 人文及社會科學集刊, 27(4), 683-718.
黃嘉彥, & 王婉菁. (2018). 運用文字探勘分析網路財經新聞預測美金外匯之研究. 管理學術研討會, 792-801.
謝吉隆, & 楊苾淳. (2018). 從 [應變自然] 到 [社會應變]: 以文字探勘方法檢視國內風災新聞的報導演變.
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2023-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明