參考文獻 |
Berry, M., & Castellanos, M. (2004). Text Mining: Clustering, Classification and Retrieval. In: New York: Springer.
Bourke, P. (1996). Cross correlation. Cross Correlation”, Auto Correlation—2D Pattern Identification.
Carneiro, H. A., & Mylonakis, E. (2009). Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clinical infectious diseases, 49(10), 1557-1564.
Chan, J. F.-W., Yip, C. C.-Y., To, K. K.-W., Tang, T. H.-C., Wong, S. C.-Y., Leung, K.-H., Fung, A. Y.-F., Ng, A. C.-K., Zou, Z., & Tsoi, H.-W. (2020). Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. Journal of clinical microbiology, 58(5), e00310-00320.
Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57-57.
Fung, G. P. C., Yu, J. X., & Lam, W. (2003). Stock prediction: Integrating text mining approach using real-time news. 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, 2003. Proceedings.,
Glasbey, J., Nepogodiev, D., Simoes, J., Omar, O., Li, E., Venn, M., Chaar, M., Chaudhry, D., Desai, A., & Edwards, J. (2021). Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: an international, multicenter, comparative cohort study. Journal of Clinical Oncology, 39(1).
Laato, S., Islam, A. N., Farooq, A., & Dhir, A. (2020). Unusual purchasing behavior during the early stages of the COVID-19 pandemic: The stimulus-organism-response approach. Journal of Retailing and Consumer Services, 57, 102224.
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. (2019). Siamrpn++: Evolution of siamese visual tracking with very deep networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Newman, N., Fletcher, R., & Schulz, A. A. (2021). S., Robertson, CT, & Nielsen, RK (2021). Reuters Institute Digital News Report 2021. Reuters Institute for the Study of Journalism. https://reutersinstitute. politics. ox. ac. uk/sites/default/files/2021-06/Digital_News_Report_2021_FINAL. pdf.
Ortiz-Martínez, Y., Garcia-Robledo, J. E., Vásquez-Castañeda, D. L., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). Can Google® trends predict COVID-19 incidence and help preparedness? The situation in Colombia. Travel medicine and infectious disease, 37, 101703.
Pelat, C., Turbelin, C., Bar-Hen, A., Flahault, A., & Valleron, A.-J. (2009). More diseases tracked by using Google Trends. Emerging infectious diseases, 15(8), 1327.
Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical review letters, 100(8), 084102.
Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific reports, 3(1), 1-6.
Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5707-5719.
Seung-PyoJun, Yoo, H. S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69-87.
Sulyok, M., Ferenci, T., & Walker, M. (2021). Google Trends Data and COVID‐19 in Europe: Correlations and model enhancement are European wide. Transboundary and Emerging Diseases, 68(4), 2610-2615.
Welch, L. (1974). Lower bounds on the maximum cross correlation of signals (corresp.). IEEE Transactions on Information theory, 20(3), 397-399.
Yoo, J.-C., & Han, T. H. (2009). Fast normalized cross-correlation. Circuits, systems and signal processing, 28(6), 819-843.
Zhang, C. (2008). Automatic keyword extraction from documents using conditional random fields. Journal of Computational Information Systems, 4(3), 1169-1180.
Zheng, R., Shou, B., & Yang, J. (2021). Supply disruption management under consumer panic buying and social learning effects. Omega, 101, 102238.
王慧蘭. (2021). 台灣新冠肺炎網路新聞報導之大數據分析—以某群聚感染事件為例.
余清祥, & 葉昱廷. (2020). 以文字探勘技術分析臺灣四大報文字風格. 數位典藏與數位人文(6), 69-96.
李揚生. (2017). 文字探勘與財經新聞: 新聞是否會改變市場行為.
張昱維, 蔡易昌, 楊惠春, & 樊聖. (2021). Google Trends 搜尋關鍵字熱度與 COVID-19 疫情趨勢的相關性-以臺灣為例的網路行為觀察性研究. 醫學與健康期刊, 10(3), 17-31.
陳世榮. (2015). 社會科學研究中的文字探勘應用: 以文意為基礎的文件分類及其問題. 人文及社會科學集刊, 27(4), 683-718.
黃嘉彥, & 王婉菁. (2018). 運用文字探勘分析網路財經新聞預測美金外匯之研究. 管理學術研討會, 792-801.
謝吉隆, & 楊苾淳. (2018). 從 [應變自然] 到 [社會應變]: 以文字探勘方法檢視國內風災新聞的報導演變.
|