參考文獻 |
1. Grimmer, M.R. and W.A. Weiss, Childhood tumors of the nervous system as
disorders of normal development. Current Opinion in Pediatrics, 2006. 18(6): p.
634-638.
2. Scotting, P.J., D.A. Walker, and G. Perilongo, Childhood solid tumours: a
developmental disorder. Nat Rev Cancer, 2005. 5(6): p. 481-8.
3. Park, J.R., A. Eggert, and H. Caron, Neuroblastoma: Biology, Prognosis, and
Treatment. Hematology/Oncology Clinics of North America, 2010. 24(1): p. 65-
86.
4. Pritchard-Jones, K., et al., Cancer in children and adolescents in Europe:
developments over 20 years and future challenges. Eur J Cancer, 2006. 42(13):
p. 2183-90.
5. Deaths : leading causes for 2013, S. National Center for Health, Editor. 2016:
Hyattsville, MD.
6. Johnsen, J.I., et al., Embryonal neural tumours and cell death. Apoptosis, 2009.
14(4): p. 424-438.
7. Vassal, G., Has chemotherapy reached its limits in pediatric cancers? Eur J
Cancer, 2005. 41(4): p. 564-75; discussion 576-7.
8. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nature
Reviews Cancer, 2003. 3(3): p. 203-216.
9. Johnsen, J.I., C. Dyberg, and M. Wickström, Neuroblastoma—A Neural Crest
Derived Embryonal Malignancy. Frontiers in Molecular Neuroscience, 2019. 12.
10. Chesler, L., et al., Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn
protein and blocks malignant progression in neuroblastoma. Cancer Res, 2006.
66(16): p. 8139-46.
11. de Bernardi, B., et al., Localized neuroblastoma. Surgical and pathologic
staging. Cancer, 1987. 60(5): p. 1066-72.
12. Haas-Kogan, D.A., et al., Impact of radiotherapy for high-risk neuroblastoma: a
Children′s Cancer Group study. Int J Radiat Oncol Biol Phys, 2003. 56(1): p. 28-
39.
13. Evans, A.E., et al., A review of 17 IV-S neuroblastoma patients at the children′s
hospital of philadelphia. Cancer, 1980. 45(5): p. 833-9.
14. Maris, J.M., et al., Neuroblastoma. Lancet, 2007. 369(9579): p. 2106-20.
15. Matthay, K.K., R.E. George, and A.L. Yu, Promising therapeutic targets in
neuroblastoma. Clin Cancer Res, 2012. 18(10): p. 2740-53.
16. Mueller, S. and K.K. Matthay, Neuroblastoma: biology and staging. Curr Oncol
Rep, 2009. 11(6): p. 431-8.
17. Brodeur, G.M., et al., Amplification of N-myc in untreated human
neuroblastomas correlates with advanced disease stage. Science, 1984.
224(4653): p. 1121-4.
18. Seeger, R.C., et al., Association of multiple copies of the N-myc oncogene with
rapid progression of neuroblastomas. N Engl J Med, 1985. 313(18): p. 1111-6.
19. Thiele, C.J., C.P. Reynolds, and M.A. Israel, Decreased expression of N-myc
precedes retinoic acid-induced morphological differentiation of human
neuroblastoma. Nature, 1985. 313(6001): p. 404-6.
20. Kohl, N.E., et al., Human N-myc is closely related in organization and nucleotide
sequence to c-myc. Nature, 1986. 319(6048): p. 73-7.
21. Stanton, B.R., et al., Loss of N-myc function results in embryonic lethality and
failure of the epithelial component of the embryo to develop. Genes &
development, 1992. 6(12a): p. 2235-2247.
22. Breit, S. and M. Schwab, Suppression of MYC by high expression of NMYC in
human neuroblastoma cells. J Neurosci Res, 1989. 24(1): p. 21-8.
23. Matsumoto, M., et al., Expression of proto-oncogene products during druginduced differentiation of a neuroblastoma cell line SK-N-DZ. Acta Neuropathol,
1989. 79(2): p. 217-21.
24. Cinatl, J., et al., In vitro differentiation of human neuroblastoma cells induced by
sodium phenylacetate. Cancer Lett, 1993. 70(1-2): p. 15-24.
25. Han, S., R.K. Wada, and N. Sidell, Differentiation of human neuroblastoma by
phenylacetate is mediated by peroxisome proliferator-activated receptor
gamma. Cancer Res, 2001. 61(10): p. 3998-4002.
26. Reddy, C.D., et al., Anticancer effects of the novel 1alpha, 25-dihydroxyvitamin
D3 hybrid analog QW1624F2-2 in human neuroblastoma. J Cell Biochem, 2006.
97(1): p. 198-206.
27. Weiss, W.A., et al., Targeted expression of MYCN causes neuroblastoma in
transgenic mice. Embo j, 1997. 16(11): p. 2985-95.
28. Huang, M. and W.A. Weiss, Neuroblastoma and MYCN. Cold Spring Harb
Perspect Med, 2013. 3(10): p. a014415.
29. Tweddle, D.A., et al., p53 cellular localization and function in neuroblastoma:
evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified
cells. Am J Pathol, 2001. 158(6): p. 2067-77.
30. Bell, E., J. Lunec, and D.A. Tweddle, Cell cycle regulation targets of MYCN
identified by gene expression microarrays. Cell Cycle, 2007. 6(10): p. 1249-56.
31. Muth, D., et al., Transcriptional repression of SKP2 is impaired in MYCNamplified neuroblastoma. Cancer Res, 2010. 70(9): p. 3791-802
32. Gogolin, S., et al., CDK4 inhibition restores G(1)-S arrest in MYCN-amplified
neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell
Cycle, 2013. 12(7): p. 1091-104.
33. Cole, K.A., et al., RNAi screen of the protein kinome identifies checkpoint kinase
1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A,
2011. 108(8): p. 3336-41.
34. Valli, E., et al., CDKL5, a novel MYCN-repressed gene, blocks cell cycle and
promotes differentiation of neuronal cells. Biochim Biophys Acta, 2012.
1819(11-12): p. 1173-85.
35. Koppen, A., et al., Dickkopf-1 is down-regulated by MYCN and inhibits
neuroblastoma cell proliferation. Cancer Lett, 2007. 256(2): p. 218-28.
36. Iavarone, A., et al., The helix-loop-helix protein Id-2 enhances cell proliferation
and binds to the retinoblastoma protein. Genes Dev, 1994. 8(11): p. 1270-84.
37. Lasorella, A., A. Iavarone, and M.A. Israel, Id2 specifically alters regulation of the
cell cycle by tumor suppressor proteins. Mol Cell Biol, 1996. 16(6): p. 2570-8.
38. Blaschke, A.J., J.A. Weiner, and J. Chun, Programmed cell death is a universal
feature of embryonic and postnatal neuroproliferative regions throughout the
central nervous system. J Comp Neurol, 1998. 396(1): p. 39-50.
39. De Zio, D., et al., Expanding roles of programmed cell death in mammalian
neurodevelopment. Semin Cell Dev Biol, 2005. 16(2): p. 281-94.
40. Evan, G.I., et al., Induction of apoptosis in fibroblasts by c-myc protein. Cell,
1992. 69(1): p. 119-28.
41. Fulda, S., et al., MycN sensitizes neuroblastoma cells for drug-triggered
apoptosis. Med Pediatr Oncol, 2000. 35(6): p. 582-4.
42. Strasser, A., et al., Novel primitive lymphoid tumours induced in transgenic mice
by cooperation between myc and bcl-2. Nature, 1990. 348(6299): p. 331-3.
43. Elson, A., et al., The MMTV/c-myc transgene and p53 null alleles collaborate to
induce T-cell lymphomas, but not mammary carcinomas in transgenic mice.
Oncogene, 1995. 11(1): p. 181-190.
44. Chesler, L., et al., Chemotherapy-induced apoptosis in a transgenic model of
neuroblastoma proceeds through p53 induction. Neoplasia, 2008. 10(11): p.
1268-74.
45. Valsesia-Wittmann, S., et al., Oncogenic cooperation between H-Twist and NMyc overrides failsafe programs in cancer cells. Cancer Cell, 2004. 6(6): p. 625-
30.
46. Slack, A., et al., The p53 regulatory gene MDM2 is a direct transcriptional target
of MYCN in neuroblastoma. Proc Natl Acad Sci U S A, 2005. 102(3): p. 731-6.
47. Kim, S.S., et al., CUL7 is a novel antiapoptotic oncogene. Cancer Res, 2007.
67(20): p. 9616-22.
48. Swarbrick, A., et al., miR-380-5p represses p53 to control cellular survival and is
associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med,
2010. 16(10): p. 1134-40.
49. Huang, R., et al., MYCN and MYC regulate tumor proliferation and
tumorigenesis directly through BMI1 in human neuroblastomas. Faseb j, 2011.
25(12): p. 4138-49.
50. Wu, P.-Y., et al., Aryl hydrocarbon receptor downregulates MYCN expression and
promotes cell differentiation of neuroblastoma. PloS one, 2014. 9(2): p. e88795.
51. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith, The mammalian basic
helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol,
2004. 36(2): p. 189-204.
52. Crews, S.T., Control of cell lineage-specific development and transcription by
bHLH-PAS proteins. Genes Dev, 1998. 12(5): p. 607-20.
53. Gonzalez, F.J. and P. Fernandez-Salguero, The aryl hydrocarbon receptor: studies
using the AHR-null mice. Drug Metab Dispos, 1998. 26(12): p. 1194-8.
54. Whitlock, J.P., Jr., Induction of cytochrome P4501A1. Annu Rev Pharmacol
Toxicol, 1999. 39: p. 103-25.
55. Davarinos, N.A. and R.S. Pollenz, Aryl Hydrocarbon Receptor Imported into the
Nucleus following Ligand Binding Is Rapidly Degraded via the Cytosplasmic
Proteasome following Nuclear Export *. Journal of Biological Chemistry, 1999.
274(40): p. 28708-28715.
56. Ma, Q. and K.T. Baldwin, 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced
degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome
pathway. Role of the transcription activaton and DNA binding of AhR. J Biol
Chem, 2000. 275(12): p. 8432-8.
57. Santiago-Josefat, B. and P.M. Fernandez-Salguero, Proteasome inhibition
induces nuclear translocation of the dioxin receptor through an Sp1 and protein
kinase C-dependent pathway. J Mol Biol, 2003. 333(2): p. 249-60.
58. Barouki, R., X. Coumoul, and P.M. Fernandez-Salguero, The aryl hydrocarbon
receptor, more than a xenobiotic-interacting protein. FEBS Lett, 2007. 581(19):
p. 3608-15.
59. Kim, D.W., et al., The RelA NF-κB subunit and the aryl hydrocarbon receptor
(AhR) cooperate to transactivate the c-myc promoter in mammary cells.
Oncogene, 2000. 19(48): p. 5498-5506
60. Shimba, S., et al., Overexpression of the Aryl Hydrocarbon Receptor (AhR)
Accelerates the Cell Proliferation of A549 Cells1. The Journal of Biochemistry,
2002. 132(5): p. 795-802.
61. Moennikes, O., et al., A Constitutively Active Dioxin/Aryl Hydrocarbon Receptor
Promotes Hepatocarcinogenesis in Mice. Cancer Research, 2004. 64(14): p.
4707-4710.
62. Andersson, P., et al., A constitutively active dioxin/aryl hydrocarbon receptor
induces stomach tumors. Proceedings of the National Academy of Sciences,
2002. 99(15): p. 9990-9995.
63. Kolluri, S.K., et al., p27(Kip1) induction and inhibition of proliferation by the
intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev,
1999. 13(13): p. 1742-53.
64. Puga, A., et al., Aromatic Hydrocarbon Receptor Interaction with the
Retinoblastoma Protein Potentiates Repression of E2F-dependent Transcription
and Cell Cycle Arrest*. Journal of Biological Chemistry, 2000. 275(4): p. 2943-
2950.
65. Marlowe, J.L., et al., The Aryl Hydrocarbon Receptor Displaces p300 from E2Fdependent Promoters and Represses S Phase-specific Gene Expression*. Journal
of Biological Chemistry, 2004. 279(28): p. 29013-29022.
66. Marlowe, J.L., et al., The aryl hydrocarbon receptor binds to E2F1 and inhibits
E2F1-induced apoptosis. Mol Biol Cell, 2008. 19(8): p. 3263-71.
67. Marlowe, J.L., et al., The aryl hydrocarbon receptor displaces p300 from E2Fdependent promoters and represses S phase-specific gene expression. J Biol
Chem, 2004. 279(28): p. 29013-22.
68. Puga, A., et al., Aromatic hydrocarbon receptor interaction with the
retinoblastoma protein potentiates repression of E2F-dependent transcription
and cell cycle arrest. J Biol Chem, 2000. 275(4): p. 2943-50.
69. Watabe, Y., et al., Aryl hydrocarbon receptor functions as a potent coactivator of
E2F1-dependent trascription activity. Biol Pharm Bull, 2010. 33(3): p. 389-97.
70. Akahoshi, E., S. Yoshimura, and M. Ishihara-Sugano, Over-expression of AhR
(aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells:
neurotoxicology study. Environ Health, 2006. 5: p. 24.
71. Wan, C., et al., 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature
senescence in human and rodent neuronal cells via ROS-dependent
mechanisms. PLoS One, 2014. 9(2): p. e89811.
72. Qin, H. and J.A. Powell-Coffman, The Caenorhabditis elegans aryl hydrocarbon
receptor, AHR-1, regulates neuronal development. Dev Biol, 2004. 270(1): p. 64-
75
73. Feng, S., Z. Cao, and X. Wang, Role of aryl hydrocarbon receptor in cancer.
Biochim Biophys Acta, 2013. 1836(2): p. 197-210.
74. Wu, P.-Y., et al., Novel Endogenous Ligands of Aryl Hydrocarbon Receptor
Mediate Neural Development and Differentiation of Neuroblastoma. ACS
Chemical Neuroscience, 2019. 10(9): p. 4031-4042.
75. McInnes, K.J., et al., 5α-Reduced Glucocorticoids, Novel Endogenous Activators
of the Glucocorticoid Receptor*. Journal of Biological Chemistry, 2004. 279(22):
p. 22908-22912.
76. McInnes, K.J., et al., 5alpha-reduced glucocorticoids, novel endogenous
activators of the glucocorticoid receptor. J Biol Chem, 2004. 279(22): p. 22908-
12.
77. Penning, T.M., Molecular determinants of steroid recognition and catalysis in
aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase. J
Steroid Biochem Mol Biol, 1999. 69(1-6): p. 211-25.
78. Gastaldello, A., et al., Safer topical treatment for inflammation using 5αtetrahydrocorticosterone in mouse models. Biochemical Pharmacology, 2017.
129: p. 73-84.
79. Yang, C., et al., 5α-Reduced glucocorticoids exhibit dissociated antiinflammatory and metabolic effects. British Journal of Pharmacology, 2011.
164(6): p. 1661-1671.
80. McSweeney, S.J., et al., Improved heart function follows enhanced inflammatory
cell recruitment and angiogenesis in 11βHSD1-deficient mice post-MI.
Cardiovascular Research, 2010. 88(1): p. 159-167.
81. Morgan, R., et al., Species-specific regulation of angiogenesis by glucocorticoids
reveals contrasting effects on inflammatory and angiogenic pathways. PLOS
ONE, 2018. 13(2): p. e0192746.
82. Garcia-Segura, L.M. and R.C. Melcangi, Steroids and glial cell function. Glia,
2006. 54(6): p. 485-98.
83. Alonso, G., Prolonged corticosterone treatment of adult rats inhibits the
proliferation of oligodendrocyte progenitors present throughout white and gray
matter regions of the brain. Glia, 2000. 31(3): p. 219-31.
84. Ganter, S., et al., Growth control of cultured microglia. J Neurosci Res, 1992.
33(2): p. 218-30.
85. Vardimon, L., et al., Glucocorticoid control of glial gene expression. J Neurobiol,
1999. 40(4): p. 513-27.
86. Hardin-Pouzet, H., et al., Glucocorticoid upregulation of glutamate
dehydrogenase gene expression in vitro in astrocytes. Brain Res Mol Brain Res,
1996. 37(1-2): p. 324-8.
87. Barbaccia, M.L., et al., Stress and neuroactive steroids. Int Rev Neurobiol, 2001.
46: p. 243-72.
88. Belelli, D., et al., Neuroactive steroids and inhibitory neurotransmission:
mechanisms of action and physiological relevance. Neuroscience, 2006. 138(3):
p. 821-9.
89. Belelli, D. and J.J. Lambert, Neurosteroids: endogenous regulators of the
GABA(A) receptor. Nat Rev Neurosci, 2005. 6(7): p. 565-75.
90. Engel, S.R. and K.A. Grant, Neurosteroids and behavior. Int Rev Neurobiol, 2001.
46: p. 321-48.
91. Lambert, J.J., et al., Neurosteroid modulation of recombinant and synaptic
GABAA receptors. Int Rev Neurobiol, 2001. 46: p. 177-205.
92. Patte-Mensah, C., C. Kibaly, and A.G. Mensah-Nyagan, Substance P inhibits
progesterone conversion to neuroactive metabolites in spinal sensory circuit: a
potential component of nociception. Proc Natl Acad Sci U S A, 2005. 102(25): p.
9044-9.
93. Vallée, M., W. Mayo, and M. Le Moal, Role of pregnenolone,
dehydroepiandrosterone and their sulfate esters on learning and memory in
cognitive aging. Brain Res Brain Res Rev, 2001. 37(1-3): p. 301-12.
94. Ploessl, C., et al., Dinutuximab: An Anti-GD2 Monoclonal Antibody for High-Risk
Neuroblastoma. Ann Pharmacother, 2016. 50(5): p. 416-22.
95. Weidner, N., et al., Tumor Angiogenesis and Metastasis — Correlation in
Invasive Breast Carcinoma. New England Journal of Medicine, 1991. 324(1): p.
1-8.
96. Brawer, M.K., Quantitative microvessel density: A staging and prognostic
marker for human prostatic carcinoma. Cancer, 1996. 78(2): p. 345-349.
97. Yamazaki, K., et al., Tumor angiogenesis in human lung adenocarcinoma.
Cancer, 1994. 74(8): p. 2245-2250.
98. Angeletti, C.A., et al., Prognostic significance of tumoral angiogenesis in
completely resected late stage lung carcinoma (Stage IIIA-N2): Impact of
adjuvant therapies in a subset of patients at high risk of recurrence. Cancer,
1996. 78(3): p. 409-415.
99. Maeda, K., et al., Tumor angiogenesis as a predictor of recurrence in gastric
carcinoma. Journal of Clinical Oncology, 1995. 13(2): p. 477-481.
100. Wiggins, D.L., et al., Tumor Angiogenesis as a Prognostic Factor in Cervical
Carcinoma. Gynecologic Oncology, 1995. 56(3): p. 353-356.
101. Hollingsworth, H.C., et al., Tumor angiogenesis in advanced stage ovarian
carcinoma. Am J Pathol, 1995. 147(1): p. 33-41
102. Gasparini, G., et al., Intratumoral microvessel density and L53 protein:
Correlation with metastasis in head-and-neck squamous-cell carcinoma.
International Journal of Cancer, 1993. 55(5): p. 739-744.
103. Tapper, D., et al., Angiogenesis capacity as a diagnostic marker for human eye
tumors. Surgery, 1979. 86(1): p. 36-40.
104. Chodak, G.W., C.J. Scheiner, and B.R. Zetter, Urine from patients with
transitional-cell carcinoma stimulates migration of capillary endothelial cells. N
Engl J Med, 1981. 305(15): p. 869-74.
105. Chodak, G.W., et al., Increased levels of fibroblast growth factor-like activity in
urine from patients with bladder or kidney cancer. Cancer Res, 1988. 48(8): p.
2083-8.
106. Nguyen, M., et al., Elevated levels of an angiogenic peptide, basic fibroblast
growth factor, in the urine of patients with a wide spectrum of cancers. J Natl
Cancer Inst, 1994. 86(5): p. 356-61.
107. Yeo, K.T., et al., Vascular permeability factor (vascular endothelial growth factor)
in guinea pig and human tumor and inflammatory effusions. Cancer Res, 1993.
53(12): p. 2912-8.
108. Nanus, D.M., et al., Expression of basic fibroblast growth factor in primary
human renal tumors: correlation with poor survival. J Natl Cancer Inst, 1993.
85(19): p. 1597-9.
109. Toi, M., et al., Association of vascular endothelial growth factor expression with
tumor angiogenesis and with early relapse in primary breast cancer. Jpn J
Cancer Res, 1994. 85(10): p. 1045-9.
110. Relf, M., et al., Expression of the angiogenic factors vascular endothelial cell
growth factor, acidic and basic fibroblast growth factor, tumor growth factor
beta-1, platelet-derived endothelial cell growth factor, placenta growth factor,
and pleiotrophin in human primary breast cancer and its relation to
angiogenesis. Cancer Res, 1997. 57(5): p. 963-9.
111. Ambellan, E., M. Swanson, and A. Davidson, Glucocorticoid binding to rat liver
microsomal fractions in vitro. J Steroid Biochem, 1981. 14(5): p. 421-8.
112. Roszak, A.W., et al., Structural requirements for the binding of dexamethasone
to nuclear envelopes and plasma membranes. J Steroid Biochem Mol Biol, 1990.
37(2): p. 201-14.
113. Cascón, A., et al., Molecular characterisation of a common SDHB deletion in
paraganglioma patients. J Med Genet, 2008. 45(4): p. 233-8.
114. Marimpietri, D., et al., Proteome profiling of neuroblastoma-derived exosomes
reveal the expression of proteins potentially involved in tumor progression. PLoS
One, 2013. 8(9): p. e75054
115. Meehan, B., J. Rak, and D. Di Vizio, Oncosomes - large and small: what are they,
where they came from? J Extracell Vesicles, 2016. 5: p. 33109.
116. Al-Nedawi, K., et al., Intercellular transfer of the oncogenic receptor EGFRvIII by
microvesicles derived from tumour cells. Nat Cell Biol, 2008. 10(5): p. 619-24.
117. Minciacchi, V.R., et al., MYC Mediates Large Oncosome-Induced Fibroblast
Reprogramming in Prostate Cancer. Cancer Res, 2017. 77(9): p. 2306-2317.
118. Haug, B.H., et al., Exosome-like Extracellular Vesicles from MYCN-amplified
Neuroblastoma Cells Contain Oncogenic miRNAs. Anticancer Res, 2015. 35(5): p.
2521-30.
119. Ma, J., et al., Exosomal hsa-miR199a-3p Promotes Proliferation and Migration
in Neuroblastoma. Front Oncol, 2019. 9: p. 459.
120. Challagundla, K.B., et al., Exosome-mediated transfer of microRNAs within the
tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl
Cancer Inst, 2015. 107(7). |