博碩士論文 110821020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.191.171.121
姓名 凌郁婷(Yu-Ting Ling)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 RNA全長定序技術分析水稻於冷逆境中的剪接變體
(Splicing variants analysis in rice upon cold stress by isoform sequencing)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-16以後開放)
摘要(中) 選擇性剪接 (Alternative splicing, AS)為真核生物的後轉錄修飾機制 (post-transcription modification)裡重要的一環。在植物中,選擇性剪接不僅能產生多樣化的剪接變體 (splicing variants),更能於外部環境刺激下(如:非生物脅迫性逆境)做出反應,適度調整使植物產生抗性。
低溫對水稻 (Oryza sativa L.)產量的影響巨大,因為其過度穩定水稻內不正確的RNA結構,導致RNA分子失去原本的活性與功能。為了研究受低溫影響的初級mRNA轉錄物 (pre-mRNA transcripts)剪接和選擇性剪接的參與情況,本論文使用PacBio同源異構體定序 (Isoform sequencing, Iso-seq)來克服短RNA定序技術的限制;而先前有研究指出水稻中DEAD-box RNA Helicase42 (OsRH42)基因是低溫下mRNA成熟過程中有效剪接的必要條件,因此樣本中使用OsRH42 RNAi轉基因植株與野生型水稻進行了比較。結果顯示,與水稻基因組注釋IRGSP-1.0相比,轉錄物的種類和數量更多,並且透過RT-PCR的方式證明篩選出來的資料,不僅顯示了AS和新轉錄物的多樣化表達,同時證實所獲得的Iso-seq數據的可靠性。
轉錄因子 (Transcription factors, TFs)和剪接因子 (Splicing factors, SFs)是受AS調節的典型因子,而在整理了不同的TF家族和SF分類後,發現低溫逆境和OsRH42基因的剔除對基因表現數量及其剪接變體皆有影響。進一步分析發現,WRKY轉錄因子家族中,被證實作為調節器參與水稻冷逆境的調控機制的兩個TF基因——OsWRKY71和OsWRKY76,受低溫影響而增加其表現量;於我們的數據中發現除了和註釋相同外,亦有其他種類的剪接變體組成,如:內含子保留 (intron retention, IR)與外顯子跳躍 (exon skipping, ES)等,而該結果可以作為往後研究個別轉錄因子、剪接因子與其splicing variants 參與水稻冷逆境中的作用與功能之重要依據。
摘要(英) Alternative splicing (AS) plays important roles in the post-transcriptional modification of eukaryotes, including plants. Not only does AS generate a diverse range of splicing variants, but it also allows in response to external environmental stimuli, such as abiotic stresses, which can be fine-tuned for the stress responses. The impact of low temperature stress is significant for rice (Oryza sativa L.) yield because it leads to over-stabilization of incorrectly RNA structure and therefore inactivation of RNA molecules. To investigate the pre-mRNA splicing affected by the low temperature and the involvement of AS, we used PacBio isoform sequencing (Iso-seq) to overcome the limitations of short RNA sequencing technologies. Since the DEAD-box RNA Helicase42 (OsRH42) is known to be necessary to support effective splicing of pre-mRNA during mRNA maturation at low temperature, we used the OsRH42 RNAi transgenic lines which was compared with wild type . Our results present more diverse and abundant transcript isoforms, in comparison to rice genome annotation IRGSP-1.0. We also demonstrated the screened data by RT-PCR which showed the diverse expression in both AS and novel transcript, further confirming the confidence of the obtained Iso-seq data. Transcription factors (TFs) and splicing factors (SFs) are typical factors that regulate by the AS. After collating the different TF families and SF classifications, we found that cold stress and OsRH42-Ri lines had an impact on TF number and their splicing variant. Our data suggested that the TF families, OsWRKY71 and OsWRKY76, known as cold stress regulator in rice, which increase by cold, composed of annotated and AS variants. The results can therefore be further developed as a way to study the role of AS in different TFs after exposure to the cold.
關鍵字(中) ★ RNA全長定序
★ 選擇性剪接
★ OsRH42
★ 水稻
★ 冷逆境
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
附錄 VII
縮寫檢索表 VIII
壹、 序論 1
1. pre-mRNA剪接機制 1
2. 選擇性剪接 (Alternative splicing) 3
3. 低溫逆境與其對於水稻的影響 5
4. DEAD-box RNA helicase簡介與生理影響 7
5. 水稻DEAD-box RNA helicase 42 (OsRH42)簡介與功能 9
6. PacBio Isoform Sequencing (Iso-seq) 10
貳、 實驗目的與研究動機 13
參、 材料與方法 14
1. 植株樣品之逆境處理 14
1.1 植株培養 14
1.2 低溫 (4℃)逆境處理 14
2. PacBio Isoform Sequencing 14
2.1 萃取樣品之total RNA 14
2.2 樣品定序 15
2.3 樣品分析與水稻註釋序列對照 15
3. RT-PCR驗證逆境下差異表現之isoform 16
3.1 去除染色體DNA汙染 16
3.2 電泳RNA瓊脂膠體 16
3.3 合成cDNA 17
3.4 設計專一引子 17
肆、 實驗結果 18
1. Iso‑seq提高水稻全長cDNA的鑑定 18
2. Iso‑seq揭示的水稻新transcripts 19
3. 根據Iso-seq結果的AS綜合分析 21
4. 四個樣品中IR與ES的個別分析 23
5. 水稻中響應冷逆境反應的轉錄因子 25
6. 水稻中響應冷逆境反應的剪接因子 27
伍、 討論 31
1. Iso-seq數據與水稻基因庫選擇 31
2. AS分析中的剪切位點影響 31
3. TF與SF受OsRH42之影響 32
陸、 參考資料 34
柒、 圖表 39
捌、 附錄 60
參考文獻 Ardui, S., Ameur, A., Vermeesch, J. R., & Hestand, M. S. (2018). Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic acids research, 46(5), 2159-2168.
Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Séraphin, B., & Le Hir, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature structural & molecular biology, 12(10), 861-869.
Barta, A., Kalyna, M., & Reddy, A. S. (2010). Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. The Plant Cell, 22(9), 2926-2929.
Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual review of biochemistry, 72(1), 291-336.
Blencowe, B. J. (2006). Alternative splicing: new insights from global analyses. cell, 126(1), 37-47.
Burge, C. B., Tuschl, T., & Sharp, P. A. (1999). Splicing of precursors to mRNAs by the spliceosomes. Cold Spring Harbor Monograph Series, 37, 525-560.
Cartegni, L., Chew, S. L., & Krainer, A. R. (2002). Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature reviews genetics, 3(4), 285-298.
Cartolano, M., Huettel, B., Hartwig, B., Reinhardt, R., & Schneeberger, K. (2016). cDNA library enrichment of full length transcripts for SMRT long read sequencing. PLoS One, 11(6), e0157779.
Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2007). Cold stress regulation of gene expression in plants. Trends in plant science, 12(10), 444-451.
Cloonan, N., Forrest, A. R., Kolle, G., Gardiner, B. B., Faulkner, G. J., Brown, M. K., Taylor, D. F., Steptoe, A. L., Wani, S., & Bethel, G. (2008). Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature methods, 5(7), 613-619.
Cordeiro, A. M., Figueiredo, D. D., Tepperman, J., Borba, A. R., Lourenço, T., Abreu, I. A., Ouwerkerk, P. B., Quail, P. H., Oliveira, M. M., & Saibo, N. J. (2016). Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1859(2), 393-404.
De Coster, W., Weissensteiner, M. H., & Sedlazeck, F. J. (2021). Towards population-scale long-read sequencing. Nature reviews genetics, 22(9), 572-587.
Dong, C.-H., Zolman, B. K., Bartel, B., Lee, B.-h., Stevenson, B., Agarwal, M., & Zhu, J.-K. (2009). Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. Molecular plant, 2(1), 59-72.
Dong, C., He, F., Berkowitz, O., Liu, J., Cao, P., Tang, M., Shi, H., Wang, W., Li, Q., Shen, Z., Whelan, J., & Zheng, L. (2018). Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (Oryza sativa). The Plant Cell, 30(10), 2267-2285. https://doi.org/10.1105/tpc.18.00051
Filichkin, S., Priest, H. D., Megraw, M., & Mockler, T. C. (2015). Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Current opinion in plant biology, 24, 125-135.
Ganie, S. A., & Reddy, A. S. N. (2021). Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. Biology, 10(4), 309. https://www.mdpi.com/2079-7737/10/4/309
Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., Pantic, N., Admassu, T., James, P., & Warland, A. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature methods, 15(3), 201-206.
Guan, Q., Wu, J., Zhang, Y., Jiang, C., Liu, R., Chai, C., & Zhu, J. (2013). A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. The Plant Cell, 25(1), 342-356.
Hon, T., Mars, K., Young, G., Tsai, Y.-C., Karalius, J. W., Landolin, J. M., Maurer, N., Kudrna, D., Hardigan, M. A., & Steiner, C. C. (2020). Highly accurate long-read HiFi sequencing data for five complex genomes. Scientific data, 7(1), 399.
Howard, B. E., Hu, Q., Babaoglu, A. C., Chandra, M., Borghi, M., Tan, X., He, L., Winter-Sederoff, H., Gassmann, W., & Veronese, P. (2013). High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants. PLoS One, 8(10), e74183.
Hrmova, M., & Hussain, S. S. (2021). Plant Transcription Factors Involved in Drought and Associated Stresses. International Journal of Molecular Sciences, 22(11), 5662. https://doi.org/10.3390/ijms22115662
Huang, C.-K., Lin, W.-D., & Wu, S.-H. (2022). An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biology, 23(1), 1-28.
Jarmoskaite, I., & Russell, R. (2011). DEAD‐box proteins as RNA helicases and chaperones. Wiley Interdisciplinary Reviews: RNA, 2(1), 135-152.
Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L., & Gao, G. (2017). CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic acids research, 45(W1), W12-W16.
Kaplan, F., Kopka, J., Sung, D. Y., Zhao, W., Popp, M., Porat, R., & Guy, C. L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold‐regulated gene expression with modifications in metabolite content. The Plant Journal, 50(6), 967-981.
Khan, A., Garbelli, A., Grossi, S., Florentin, A., Batelli, G., Acuna, T., Zolla, G., Kaye, Y., Paul, L. K., & Zhu, J. K. (2014). The A rabidopsis STRESS RESPONSE SUPPRESSOR DEAD‐box RNA helicases are nucleolar‐and chromocenter‐localized proteins that undergo stress‐mediated relocalization and are involved in epigenetic gene silencing. The Plant Journal, 79(1), 28-43.
Le Hir, H., & Séraphin, B. (2008). EJCs at the heart of translational control. cell, 133(2), 213-216.
Lichtenthaler, H. K. (1998). The stress concept in plants: an introduction. Annals of the new York Academy of sciences, 851, 187-198.
Lin, B.-Y., Shih, C.-J., Hsieh, H.-Y., Chen, H.-C., & Tu, S.-L. (2020). Phytochrome coordinates with a hnRNP to regulate alternative splicing via an exonic splicing silencer. Plant physiology, 182(1), 243-254.
Linder, P., & Jankowsky, E. (2011). From unwinding to clamping—the DEAD box RNA helicase family. Nature reviews Molecular cell biology, 12(8), 505-516.
Lister, R., O′Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., & Ecker, J. R. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. cell, 133(3), 523-536.
Logsdon, G. A., Vollger, M. R., & Eichler, E. E. (2020). Long-read human genome sequencing and its applications. Nature reviews genetics, 21(10), 597-614.
Lu, C.-A., Huang, C.-K., Huang, W.-S., Huang, T.-S., Liu, H.-Y., & Chen, Y.-F. (2020). DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress. Plant physiology, 182(1), 255-271.
Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320(5881), 1344-1349.
Ner‐Gaon, H., Halachmi, R., Savaldi‐Goldstein, S., Rubin, E., Ophir, R., & Fluhr, R. (2004). Intron retention is a major phenomenon in alternative splicing in Arabidopsis. The Plant Journal, 39(6), 877-885.
Owttrim, G. W. (2013). RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA biology, 10(1), 96-110.
Palusa, S. G., & Reddy, A. S. (2015). Differential recruitment of splice variants from SR pre-mRNAs to polysomes during development and in response to stresses. Plant and Cell Physiology, 56(3), 421-427.
Parsyan, A., Svitkin, Y., Shahbazian, D., Gkogkas, C., Lasko, P., Merrick, W. C., & Sonenberg, N. (2011). mRNA helicases: the tacticians of translational control. Nature reviews Molecular cell biology, 12(4), 235-245.
Pearce, R. S. (2001). Plant freezing and damage. Annals of botany, 87(4), 417-424.
Piovesan, A., Caracausi, M., Antonaros, F., Pelleri, M. C., & Vitale, L. (2016). GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics. Database, 2016, baw153.
Prospects, F. C., & Situation, F. (2022). Food and Agriculture Organization of the United Nations: Rome. In: Italy.
Rambout, X., Dequiedt, F., & Maquat, L. E. (2017). Beyond transcription: roles of transcription factors in pre-mRNA splicing. Chemical reviews, 118(8), 4339-4364.
Reddy, A. S. (2007). Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu. Rev. Plant Biol., 58, 267-294.
Reddy, A. S., Rogers, M. F., Richardson, D. N., Hamilton, M., & Ben-Hur, A. (2012). Deciphering the plant splicing code: experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Frontiers in plant science, 3, 18.
Reddy, A. S. N., Marquez, Y., Kalyna, M., & Barta, A. (2013). Complexity of the Alternative Splicing Landscape in Plants The Plant Cell, 25(10), 3657-3683. https://doi.org/10.1105/tpc.113.117523
Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications. Genomics, proteomics & bioinformatics, 13(5), 278-289.
Rogers Jr, G. W., Komar, A. A., & Merrick, W. C. (2002). eIF4A: the godfather of the DEAD box helicases.
Sarkar, M., & Ghosh, M. K. (2016). DEAD box RNA helicases: crucial regulators of gene expression and oncogenesis. Frontiers in Bioscience-Landmark, 21(2), 225-250.
Sharon, D., Tilgner, H., Grubert, F., & Snyder, M. (2013). A single-molecule long-read survey of the human transcriptome. Nature biotechnology, 31(11), 1009-1014.
Singh, R., & Valcárcel, J. (2005). Building specificity with nonspecific RNA-binding proteins. Nature structural & molecular biology, 12(8), 645-653.
Staley, J. P., & Guthrie, C. (1998). Mechanical devices of the spliceosome: motors, clocks, springs, and things. cell, 92(3), 315-326.
Stark, R., Grzelak, M., & Hadfield, J. (2019). RNA sequencing: the teenage years. Nature reviews genetics, 20(11), 631-656.
Syed, N. H., Kalyna, M., Marquez, Y., Barta, A., & Brown, J. W. (2012). Alternative splicing in plants–coming of age. Trends in plant science, 17(10), 616-623.
Viana, V. E., Busanello, C., da Maia, L. C., Pegoraro, C., & de Oliveira, A. C. (2018). Activation of rice WRKY transcription factors: an army of stress fighting soldiers? Current opinion in plant biology, 45, 268-275.
Wahl, M. C., Will, C. L., & Lührmann, R. (2009). The spliceosome: design principles of a dynamic RNP machine. cell, 136(4), 701-718.
Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., & Burge, C. B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221), 470-476.
Will, C. L., & Lührmann, R. (2001). Spliceosomal UsnRNP biogenesis, structure and function. Current opinion in cell biology, 13(3), 290-301.
Xu, R. R., Qi, S. D., Lu, L. T., Chen, C. T., Wu, C. A., & Zheng, C. C. (2011). A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. The FEBS Journal, 278(13), 2296-2306.
Zhang, Q., Chen, Q., Wang, S., Hong, Y., & Wang, Z. (2014). Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice, 7(1), 1-12.
Zhu, J., Mayeda, A., & Krainer, A. R. (2001). Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Molecular cell, 8(6), 1351-1361.
指導教授 陸重安(Chung-An Lu) 審核日期 2023-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明