以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:105 、訪客IP:3.149.234.50
姓名 張伯鴻(Po-Hong Zhang) 查詢紙本館藏 畢業系所 生命科學系 論文名稱 探討 Mef2c 和 Mrf4 的機制於肌肉新生及癌症惡病質
(The investigation of Mef2c and Mrf4 mechanism in Myogenesis and Cancer Cachexia)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2026-1-18以後開放) 摘要(中) 癌症惡病質是一種複雜的綜合症,與多種因素相關,導致持續的肌肉和脂肪流失,
這種流失並不能完全通過營養補充來逆轉。骨骼肌的消耗是惡病質中最嚴重的副作用,
其潛在的分子機制在很大程度上尚不清楚。為了理解參與癌症惡病質的機制,我們使用
癌症惡病質異種移植老鼠,誘導癌症惡病質,並收集其組織進行 RNA-seq 分析。在 RNAseq 數據中,我們觀察到 Mef2c 的嚴重下調,並藉由組織切片發現,發現了中心細胞核
於癌症惡病質中明顯上升,確認了癌症惡病質對肌肉再生的影響,而 Mef2c 涉及 Mrf4
的調控,Mrf4 通過抑制 Mef2 活性來負向調節骨骼肌的生長。為了調查 Mef2c 和 Mrf4
在癌症惡病質的關係,我們在 C2C12 細胞中誘導 Mef2c 和 Mrf4 的過度表達。令人驚訝
的,我們觀察到 Mef2c 過度表達細胞在肌肉生成和萎縮方面的分化較差。我們認為 Mef2c
亞型 1 在肌肉生成和萎縮中的肌原性活性較低,通過 Mef2c 的過度表達並未恢復其肌肉
新生能力。同時我們觀察到誘導 Mrf4 過度表達成功地導致更高的肌原性,表明 Mrf4 水
平在肌原性過程中具有關鍵的調節作用。然而即使在肌肉新生中,通過 Mrf4 過度表達
也未能拯救 C2C12-Mrf4 細胞在接受癌症惡病質培養液處理後的肌肉新生能力。有趣的
是,Mrf4 的 RNA 和蛋白質並不會被癌症惡病質抑制,但抑制了 Mrf4 在肌肉新生中的
功能,為了調查此情形,我利用了三重比對挑選出 Mrf4 的結合位基因,發現了下游基
因 Kcnn3 會受到癌症病質和 Mrf4 調控,證實了癌症惡病質可能藉由影響下游基因結合
位來影響 Mrf4 的表現能力。總結來說,本論文證實了癌症惡病質的肌肉狀態異常無法
藉由大量表現 Mef2c 和 Mrf4 來挽救,但未來可以藉由調查 Mrf4 新的機制來進一步尋
找挽救的方式。摘要(英) Cancer cachexia is a complex syndrome associated with multiple factors results in ongoing muscle
and fat loss that is not completely reversible by nutritional supplementation. Skeletal muscle wasting is
the most severe side effect in cachexia, and the underlying molecular mechanisms are largely unknown.
To understand the mechanisms involved in cancer cachexia, we used cancer cachectic xenograft mice,
induced cancer cachexia, and collected their tissues for RNA-seq analysis. In the RNA-seq data, we
observed severe down-regulation of Mef2c, and found through tissue sections that central cell nuclei
were significantly increased in cancer cachexia, confirming the impact of cancer cachexia on muscle
regeneration, and Mef2c is involved in the regulation of Mrf4. Mrf4 negatively regulates skeletal muscle
growth by inhibiting Mef2 activity. To investigate the relationship between Mef2c and Mrf4 in cancer
cachexia, we induced overexpression of Mef2c and Mrf4 in C2C12 cells. Surprisingly, we observed that
Mef2c-overexpressing cells were poorly differentiated with respect to myogenesis and atrophy. We
believe that Mef2c isoform 1 has low myogenic activity in myogenesis and atrophy, and its myogenic
capacity is not restored by overexpression of Mef2c. At the same time, we observed that inducing Mrf4
overexpression successfully resulted in higher myogenicity, indicating that Mrf4 levels have a critical
regulatory role in the myogenic process. However, even in myogenesis, Mrf4 overexpression failed to
rescue the myogenesis ability of C2C12-Mrf4 cells after being treated with cancer cachexia culture
medium. Interestingly, the RNA and protein of Mrf4 are not inhibited by cancer cachexia, but inhibit
the function of Mrf4 in muscle regeneration. In order to investigate this situation, I used triple alignment
to select the binding site genes of Mrf4 and discovered the downstream The gene Kcnn3 is regulated by
cancer cachexia and Mrf4, confirming that cancer cachexia may affect the expression ability of Mrf4 by
affecting downstream gene binding sites.In conclusion, this paper confirms that the abnormal muscle
status of cancer cachexia cannot be rescued by excessive expression of Mef2c and Mrf4, but in the future,
we can further find ways to rescue it by investigating the new mechanism of Mrf4.關鍵字(中) ★ 癌症惡病質 關鍵字(英) ★ Mef2c
★ Mrf4
★ Cancer cachexia論文目次 摘要.....................................................................................................................................i
Abstract .............................................................................................................................ii
致謝 (Acknowledgement).............................................................................................. iii
目錄...................................................................................................................................iv
縮寫與全名表(Abbreviations) .........................................................................................x
第一章 緒論......................................................................................................................1
1.1 癌症惡病質 (Cancer cachexia) ............................................................................1
1.1.1 癌症惡病質簡介..............................................................................................1
1.1.2 癌症惡病質的機制..........................................................................................2
1.2 骨骼肌(Skeletal Muscle)........................................................................................4
1.3 肌肉新生(Myogenesis)...........................................................................................5
1.4 Mef2c 轉錄因子(Myocyte enhancer factor 2C)....................................................8
1.4.1 癌症惡病質對 Mef2c 的調控........................................................................ 11
1.5 MRF4 轉錄因子(Myogenic regulatory factor 4)................................................ 11
1.5.1 Mef2c 和 MRF4 的互相調控.........................................................................12
1.6 研究動機與目的...................................................................................................14
第二章 材料及方法........................................................................................................15
2.1 實驗材料(Experiment materials)..................................................................15
2.1.1 小鼠肌纖維母細胞:Mouse myoblast cells (C2C12) ................................15
2.1.2 人胚胎腎細胞:Human embryonic kidney epithelial cells (HEK293FT)
..........................................................................................................................................15
2.1.3 小鼠纖維母細胞:Fibroblast cells (C3H/10T1/2)......................................15
2.1.4 穩定細胞株:C2C12-tTA-puro...................................................................15
2.1.5 穩定細胞株:C2C12-tTA-Mef2c.................................................................15
2.1.6 穩定細胞株:C2C12-tTA-Mrf4...................................................................16
2.1.7 小鼠大腸癌細胞:Mouse colon carcinoma (C26) .....................................16
2.2 質體建構(plasmid construction) ...................................................................16
2.2.1 Vector 建構.....................................................................................................16
2.2.2 Insert 製備......................................................................................................17
2.2.3 Ligation...........................................................................................................18
2.2.4 Transformation ..............................................................................................18
2.2.5 Minipreparation.............................................................................................18
2.2.6 正反接確認....................................................................................................19
2.3 細胞轉染(Cell Transfection)...............................................................................19
2.3.1 細胞培養........................................................................................................19
2.3.2 細胞轉染作用................................................................................................19
2.4 冷光素酵素報導檢測(Luciferase reporter assay).............................................20
2.5 RNA 萃取(RNA extraction).................................................................................20
2.6 反轉錄聚合酵素連鎖反應(Reverse-transcription)...........................................21
2.7 即時定量聚合酵素連鎖反應(Quantitative real-time PCR, qRT-PCR) ..........21
2.8 細胞免疫螢光染色(Immunofluroescence).........................................................22
2.9 小鼠組織切取(Muscle tissue extraction) ...........................................................22
2.10 組織石蠟切片(Paraffin section) .......................................................................23
2.10.1 組織包埋辦法及準備..................................................................................23
2.10.2 石蠟切片......................................................................................................23
2.11 蘇木精及伊紅染色(H&E staining)...................................................................23
2.12 抗原修復(Antigen Retrieval)............................................................................24
2.13 AEC 染色(AEC Staining)...................................................................................24
2.14 西方墨點法(Western blot).................................................................................24
2.14.1 聚丙烯醯氨凝膠電泳(SDS-polyacrylamide gel electrophoresis)............25
2.14.2 蛋白質轉印(Transfer).................................................................................25
2.14.3 Blocking 及抗體辨識...................................................................................25
2.14.4 蛋白質上的抗體脫附(Stripping) ...............................................................26
2.15 RNAseq 資料分析...............................................................................................26
2.15.1 Deseq 分析....................................................................................................26
2.15.2 KEGG 分析..................................................................................................26
2.15.3 GO 分析(Gene Ontology)............................................................................27
2.15.4 DO 分析(Disease Ontology)........................................................................27
2.16 腺病毒製造 (Adeno-associated virus production) .........................................27
第三章 結果....................................................................................................................29
3.1 癌症惡病質對 MRFs 的表現 ..............................................................................29
3.2 在癌症惡病質中 Mef2c 的下調...........................................................................29
3.3 癌症惡病質與中心核的關係...............................................................................30
3.4 質體建構...............................................................................................................30
3.5 建構 C2c12-tTA-Mef2c 穩定細胞株..................................................................31
vii
3.6 癌症惡病質對 Mef2c 啟動子的影響...................................................................31
3.7 大量表現 Mef2c 對 C2C12 增生及分化的表現.................................................32
3.8 在癌症惡病質大量表達 Mef2c 第一種亞型的表現...........................................33
3.9 在癌症惡病質中對 Mef2c 不同領域的影響.......................................................33
3.10 建構 AAV 系統...................................................................................................34
3.11 建構 C2c12-tTA-Mrf4 穩定細胞株..................................................................34
3.12 大量表現 Mrf4 對 C2c12 增生及分化的表現..................................................35
3.13 在肌肉新生中大量表達 Mrf4 的表現...............................................................35
3.14 在肌肉萎縮中大量表達 Mrf4 的表現...............................................................36
3.15 Mrf4 與癌症惡病質的機制探討.........................................................................37
3.16 Wnt3a 蛋白的生產..............................................................................................38
第 四 章 討論................................................................................................................39
4.1 Mef2c 於癌症惡病質和肌肉新生中的調控.........................................................39
4.2 Mrf4 於癌症惡病質和肌肉新生中的調控...........................................................40
4.3 結論及未來展望...................................................................................................41
第 五 章 圖表................................................................................................................42
Fig.5-1 癌症惡病質對 MRFs 的表現....................................................................42
Fig.5-2 在癌症惡病質中 Mef2c 的下調................................................................43
Fig.5-3 癌症惡病質與中心核的關係 ....................................................................44
Fig.5-4 質體建構 ....................................................................................................48
Fig.5-5 癌症惡病質對 Mef2c 啟動子的影響........................................................49
Fig.5-6 大量表現 Mef2c 對 C2C12 增生及分化的表現.......................................50
Fig5-7 在癌症惡病質大量表達 Mef2c 第一種亞型的表現..................................51
Fig.5-8 在癌症惡病質中對 Mef2c 不同結構域的影響.........................................52
..........................................................................................................................................53
..........................................................................................................................................53
Fig.5-9 AAV 系統的架構........................................................................................53
..........................................................................................................................................54
Fig5-10. 大量表現 Mrf4 對 C2c12 增生及分化的表現.......................................54
Fig5-11. 在肌肉新生中大量表達 Mrf4 的表現....................................................57
Fig5-12. 在肌肉萎縮中大量表達 Mrf4 的表現....................................................59
Fig5-13. Mrf4 與癌症惡病質的機制探討..............................................................63
Fig5-14. Wnt3a 蛋白的生產...................................................................................64
第六章 參考資料............................................................................................................65
第七章 附錄....................................................................................................................71
7.1 溶劑及溶液配方 (The protocol of solvent and solution) .................................71
30% acrylamide/bisacrylamide:............................................................................71
Aprotinin stock solution:........................................................................................71
PBST:.......................................................................................................................71
G418 (geneticin) stock solution (100 mg/mL): .....................................................71
2X HEPES:..............................................................................................................71
1xTransfer buffer (1L):..........................................................................................71
10%APS: .................................................................................................................71
FBS: .........................................................................................................................72
5x Tank buffer: .......................................................................................................72
PMSF stock solution (100mM):.............................................................................72
ix
Plasmid extraction..................................................................................................72
Bacteria culture.......................................................................................................72
RNA extraction .......................................................................................................72
7.2 引子目錄...............................................................................................................73
7.3 R 語言程式碼 .......................................................................................................75
DEG 分析 ...............................................................................................................75
KEGG 分析............................................................................................................75
GO 分析 DO 分析................................................................................................76
7.4 Mef2c 亞型胺基酸序列 ........................................................................................77
Mef2c 一號亞型.......................................................................................................77
Mef2c 二號亞型.......................................................................................................77
Mef2c 三號亞型.......................................................................................................77
Mef2c 四號亞型.......................................................................................................78
Mef2c 五號亞型.......................................................................................................78
Mef2c 六號亞型.......................................................................................................79
Mef2c 七號亞型.......................................................................................................79
Mef2c 八號亞型.......................................................................................................79
7.5 中心細胞核計算的原始資料...............................................................................80
7.6 實驗室 RNA-seq 數據圖......................................................................................81
VOCANOL PLOT..................................................................................................81
KEGG analysis........................................................................................................82
Go analysis ..............................................................................................................83
Do analysis...............................................................................................................84參考文獻 1. Adachi, M., Lin, P.Y., Pranav, H., and Monteggia, L.M. (2016).
Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse
Number and Learning and Memory. Biol Psychiatry 80, 140-148.
10.1016/j.biopsych.2015.09.018.
2. Anderson, C.M., Hu, J., Barnes, R.M., Heidt, A.B., Cornelissen, I., and
Black, B.L. (2015). Myocyte enhancer factor 2C function in skeletal
muscle is required for normal growth and glucose metabolism in mice.
Skelet Muscle 5, 7. 10.1186/s13395-015-0031-0.
3. Argiles, J.M., Busquets, S., Stemmler, B., and Lopez-Soriano, F.J.
(2014). Cancer cachexia: understanding the molecular basis. Nat Rev
Cancer 14, 754-762. 10.1038/nrc3829.
4. Azhar, M., Wardhani, B.W.K., and Renesteen, E. (2022). The
regenerative potential of Pax3/Pax7 on skeletal muscle injury. J Genet
Eng Biotechnol 20, 143. 10.1186/s43141-022-00429-x.
5. Balsano, R., Kruize, Z., Lunardi, M., Comandatore, A., Barone, M.,
Cavazzoni, A., Re Cecconi, A.D., Morelli, L., Wilmink, H., Tiseo, M.,
et al. (2022). Transforming Growth Factor-Beta Signaling in CancerInduced Cachexia: From Molecular Pathways to the Clinics. Cells 11.
10.3390/cells11172671.
6. Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., and Fearon,
K.C.H. (2018). Cancer-associated cachexia. Nat Rev Dis Primers 4,
17105. 10.1038/nrdp.2017.105.
7. Baruffaldi, F., Montarras, D., Basile, V., De Feo, L., Badodi, S.,
Ganassi, M., Battini, R., Nicoletti, C., Imbriano, C., Musaro, A., and
Molinari, S. (2017). Dynamic Phosphorylation of the Myocyte
Enhancer Factor 2Calpha1 Splice Variant Promotes Skeletal Muscle
Regeneration and Hypertrophy. Stem Cells 35, 725-738.
10.1002/stem.2495.
8. Bentzinger, C.F., Wang, Y.X., and Rudnicki, M.A. (2012). Building
muscle: molecular regulation of myogenesis. Cold Spring Harb
Perspect Biol 4. 10.1101/cshperspect.a008342.
9. Blaauw, B., Schiaffino, S., and Reggiani, C. (2013). Mechanisms
modulating skeletal muscle phenotype. Compr Physiol 3, 1645-1687.
10.1002/cphy.c130009.
78
10. Braun, T.P., Zhu, X., Szumowski, M., Scott, G.D., Grossberg, A.J.,
Levasseur, P.R., Graham, K., Khan, S., Damaraju, S., Colmers, W.F., et
al. (2011). Central nervous system inflammation induces muscle
atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp
Med 208, 2449-2463. 10.1084/jem.20111020.
11. Buckingham, M., and Relaix, F. (2015). PAX3 and PAX7 as upstream
regulators of myogenesis. Semin Cell Dev Biol 44, 115-125.
10.1016/j.semcdb.2015.09.017.
12. Cespedes Feliciano, E.M., Avrutin, E., Caan, B.J., Boroian, A., and
Mourtzakis, M. (2018). Screening for low muscularity in colorectal
cancer patients: a valid, clinic-friendly approach that predicts mortality.
J Cachexia Sarcopenia Muscle 9, 898-908. 10.1002/jcsm.12317.
13. Chang, T.H., Vincent, S.D., Buckingham, M.E., and Zammit, P.S.
(2007). The A17 enhancer directs expression of Myf5 to muscle
satellite cells but Mrf4 to myonuclei. Dev Dyn 236, 3419-3426.
10.1002/dvdy.21356.
14. Das, S.K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B.,
Gorkiewicz, G., Tamilarasan, K.P., Kumari, P., Trauner, M., et al.
(2011). Adipose triglyceride lipase contributes to cancer-associated
cachexia. Science 333, 233-238. 10.1126/science.1198973.
15. Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a
single transfected cDNA converts fibroblasts to myoblasts. Cell 51,
987-1000. 10.1016/0092-8674(87)90585-x.
16. Delitto, D., Judge, S.M., George, T.J., Jr., Sarosi, G.A., Thomas, R.M.,
Behrns, K.E., Hughes, S.J., Judge, A.R., and Trevino, J.G. (2017). A
clinically applicable muscular index predicts long-term survival in
resectable pancreatic cancer. Surgery 161, 930-938.
10.1016/j.surg.2016.09.038.
17. Di Gioia, S.A., Shaaban, S., Tuysuz, B., Elcioglu, N.H., Chan, W.M.,
Robson, C.D., Ecklund, K., Gilette, N.M., Hamzaoglu, A., Tayfun,
G.A., et al. (2018). Recessive MYF5 Mutations Cause External
Ophthalmoplegia, Rib, and Vertebral Anomalies. Am J Hum Genet
103, 115-124. 10.1016/j.ajhg.2018.05.003.
18. Dodou, E., Xu, S.M., and Black, B.L. (2003). mef2c is activated
directly by myogenic basic helix-loop-helix proteins during skeletal
muscle development in vivo. Mech Dev 120, 1021-1032.
10.1016/s0925-4773(03)00178-3.
79
19. Exeter, D., and Connell, D.A. (2010). Skeletal muscle: functional
anatomy and pathophysiology. Semin Musculoskelet Radiol 14, 97-105.
10.1055/s-0030-1253154.
20. Frontera, W.R., and Ochala, J. (2015). Skeletal muscle: a brief review
of structure and function. Calcif Tissue Int 96, 183-195.
10.1007/s00223-014-9915-y.
21. Hargreaves, M., and Spriet, L.L. (2020). Author Correction: Skeletal
muscle energy metabolism during exercise. Nat Metab 2, 990.
10.1038/s42255-020-00290-7.
22. Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M.,
Olson, E.N., and Klein, W.H. (1993). Muscle deficiency and neonatal
death in mice with a targeted mutation in the myogenin gene. Nature
364, 501-506. 10.1038/364501a0.
23. He, N., and Ye, H. (2020). Exercise and Muscle Atrophy. Adv Exp
Med Biol 1228, 255-267. 10.1007/978-981-15-1792-1_17.
24. Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y.,
Bruneau, B.G., and Srivastava, D. (2010). Direct reprogramming of
fibroblasts into functional cardiomyocytes by defined factors. Cell 142,
375-386. 10.1016/j.cell.2010.07.002.
25. Judge, S.M., Deyhle, M.R., Neyroud, D., Nosacka, R.L., D′Lugos,
A.C., Cameron, M.E., Vohra, R.S., Smuder, A.J., Roberts, B.M.,
Callaway, C.S., et al. (2020). MEF2c-Dependent Downregulation of
Myocilin Mediates Cancer-Induced Muscle Wasting and Associates
with Cachexia in Patients with Cancer. Cancer Res 80, 1861-1874.
10.1158/0008-5472.CAN-19-1558.
26. Kir, S., White, J.P., Kleiner, S., Kazak, L., Cohen, P., Baracos, V.E.,
and Spiegelman, B.M. (2014). Tumour-derived PTH-related protein
triggers adipose tissue browning and cancer cachexia. Nature 513, 100-
104. 10.1038/nature13528.
27. Lambert, M., Bastide, B., and Cieniewski-Bernard, C. (2018).
Involvement of O-GlcNAcylation in the Skeletal Muscle Physiology
and Physiopathology: Focus on Muscle Metabolism. Front Endocrinol
(Lausanne) 9, 578. 10.3389/fendo.2018.00578.
28. Lazure, F., Blackburn, D.M., Corchado, A.H., Sahinyan, K., Karam, N.,
Sharanek, A., Nguyen, D., Lepper, C., Najafabadi, H.S., Perkins, T.J.,
et al. (2020). Myf6/MRF4 is a myogenic niche regulator required for
the maintenance of the muscle stem cell pool. EMBO Rep 21, e49499.
10.15252/embr.201949499.
80
29. Loumaye, A., Lause, P., Zhong, X., Zimmers, T.A., Bindels, L.B., and
Thissen, J.P. (2022). Activin A Causes Muscle Atrophy through
MEF2C-Dependent Impaired Myogenesis. Cells 11.
10.3390/cells11071119.
30. Loumaye, A., and Thissen, J.P. (2017). Biomarkers of cancer cachexia.
Clin Biochem 50, 1281-1288. 10.1016/j.clinbiochem.2017.07.011.
31. Mansouri, A. (1998). The role of Pax3 and Pax7 in development and
cancer. Crit Rev Oncog 9, 141-149. 10.1615/critrevoncog.v9.i2.40.
32. Massari, M.E., and Murre, C. (2000). Helix-loop-helix proteins:
regulators of transcription in eucaryotic organisms. Mol Cell Biol 20,
429-440. 10.1128/MCB.20.2.429-440.2000.
33. Moretti, I., Ciciliot, S., Dyar, K.A., Abraham, R., Murgia, M., Agatea,
L., Akimoto, T., Bicciato, S., Forcato, M., Pierre, P., et al. (2016).
MRF4 negatively regulates adult skeletal muscle growth by repressing
MEF2 activity. Nat Commun 7, 12397. 10.1038/ncomms12397.
34. Nishikawa, H., Goto, M., Fukunishi, S., Asai, A., Nishiguchi, S., and
Higuchi, K. (2021). Cancer Cachexia: Its Mechanism and Clinical
Significance. Int J Mol Sci 22. 10.3390/ijms22168491.
35. Olson, E.N., Arnold, H.H., Rigby, P.W., and Wold, B.J. (1996). Know
your neighbors: three phenotypes in null mutants of the myogenic
bHLH gene MRF4. Cell 85, 1-4. 10.1016/s0092-8674(00)81073-9.
36. Parker, M.H., Seale, P., and Rudnicki, M.A. (2003). Looking back to
the embryo: defining transcriptional networks in adult myogenesis. Nat
Rev Genet 4, 497-507. 10.1038/nrg1109.
37. Piasecka, A., Sekrecki, M., Szczesniak, M.W., and Sobczak, K. (2021).
MEF2C shapes the microtranscriptome during differentiation of skeletal
muscles. Sci Rep 11, 3476. 10.1038/s41598-021-82706-2.
38. Piatkowska, A.M., Evans, S.E., and Stern, C.D. (2021). Cellular aspects
of somite formation in vertebrates. Cells Dev 168, 203732.
10.1016/j.cdev.2021.203732.
39. Pigneur, F., Di Palma, M., Raynard, B., Guibal, A., Cohen, F., Daidj,
N., Aziza, R., El Hajjam, M., Louis, G., Goldwasser, F., and Deluche,
E. (2023). Psoas muscle index is not representative of skeletal muscle
index for evaluating cancer sarcopenia. J Cachexia Sarcopenia Muscle
14, 1613-1620. 10.1002/jcsm.13230.
40. Ridgeway, A.G., Wilton, S., and Skerjanc, I.S. (2000). Myocyte
enhancer factor 2C and myogenin up-regulate each other′s expression
81
and induce the development of skeletal muscle in P19 cells. J Biol
Chem 275, 41-46. 10.1074/jbc.275.1.41.
41. Sadeghi, M., Keshavarz-Fathi, M., Baracos, V., Arends, J., Mahmoudi,
M., and Rezaei, N. (2018). Cancer cachexia: Diagnosis, assessment, and
treatment. Crit Rev Oncol Hematol 127, 91-104.
10.1016/j.critrevonc.2018.05.006.
42. Schiaffino, S., Dyar, K.A., and Calabria, E. (2018). Skeletal muscle
mass is controlled by the MRF4-MEF2 axis. Curr Opin Clin Nutr
Metab Care 21, 164-167. 10.1097/MCO.0000000000000456.
43. Schiaffino, S., Dyar, K.A., Ciciliot, S., Blaauw, B., and Sandri, M.
(2013). Mechanisms regulating skeletal muscle growth and atrophy.
FEBS J 280, 4294-4314. 10.1111/febs.12253.
44. Schmidt, S.F., Rohm, M., Herzig, S., and Berriel Diaz, M. (2018).
Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends Cancer
4, 849-860. 10.1016/j.trecan.2018.10.001.
45. Siff, T., Parajuli, P., Razzaque, M.S., and Atfi, A. (2021). CancerMediated Muscle Cachexia: Etiology and Clinical Management. Trends
Endocrinol Metab 32, 382-402. 10.1016/j.tem.2021.03.007.
46. Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., Acharya,
A., Smith, C.L., Tallquist, M.D., Neilson, E.G., et al. (2012). Heart
repair by reprogramming non-myocytes with cardiac transcription
factors. Nature 485, 599-604. 10.1038/nature11139.
47. Taylor, M.V., and Hughes, S.M. (2017). Mef2 and the skeletal muscle
differentiation program. Semin Cell Dev Biol 72, 33-44.
10.1016/j.semcdb.2017.11.020.
48. Thoma, A., and Lightfoot, A.P. (2018). NF-kB and Inflammatory
Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med
Biol 1088, 267-279. 10.1007/978-981-13-1435-3_12.
49. Vicente-Garcia, C., Hernandez-Camacho, J.D., and Carvajal, J.J.
(2022). Regulation of myogenic gene expression. Exp Cell Res 419,
113299. 10.1016/j.yexcr.2022.113299.
50. Voronova, A., Coyne, E., Al Madhoun, A., Fair, J.V., Bosiljcic, N., StLouis, C., Li, G., Thurig, S., Wallace, V.A., Wiper-Bergeron, N., and
Skerjanc, I.S. (2013). Hedgehog signaling regulates MyoD expression
and activity. J Biol Chem 288, 4389-4404. 10.1074/jbc.M112.400184.
51. Weissman, I.L. (2000). Stem cells: units of development, units of
regeneration, and units in evolution. Cell 100, 157-168. 10.1016/s0092-
8674(00)81692-x.
82
52. Westerblad, H., Bruton, J.D., and Katz, A. (2010). Skeletal muscle:
energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res
316, 3093-3099. 10.1016/j.yexcr.2010.05.019.
53. Xin, M., Olson, E.N., and Bassel-Duby, R. (2013). Mending broken
hearts: cardiac development as a basis for adult heart regeneration and
repair. Nat Rev Mol Cell Biol 14, 529-541. 10.1038/nrm3619.
54. Yin, H., Li, D., Wang, Y., Zhao, X., Liu, Y., Yang, Z., and Zhu, Q.
(2015). Myogenic regulatory factor (MRF) expression is affected by
exercise in postnatal chicken skeletal muscles. Gene 561, 292-299.
10.1016/j.gene.2015.02.044.
55. Yin, L., Li, N., Jia, W., Wang, N., Liang, M., Yang, X., and Du, G.
(2021). Skeletal muscle atrophy: From mechanisms to treatments.
Pharmacol Res 172, 105807. 10.1016/j.phrs.2021.105807.
56. Zhang, M., Zhu, B., and Davie, J. (2015). Alternative splicing of
MEF2C pre-mRNA controls its activity in normal myogenesis and
promotes tumorigenicity in rhabdomyosarcoma cells. J Biol Chem 290,
310-324. 10.1074/jbc.M114.606277.指導教授 陳盛良(Shen-Liang Chen) 審核日期 2024-1-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare