博碩士論文 110821011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.227.26.100
姓名 張立樺(Li-Hua Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表沒食子兒茶素沒食子酸酯調節A549肺癌和HepG2肝癌細胞中ACE2和TMPRSS2蛋白的表達
(EGCG regulates the expression of ACE2 and TMPRSS2 proteins in A549 lung and HepG2 liver cancer cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-2-1以後開放)
摘要(中) 自從 COVID-19 爆發以來,全球已有超過 7 億多人感染,逾 600 萬人生命不幸喪
失。儘管疫苗和口服藥物已經問世,但仍然存在許多的後遺症,其持續時間因人而異,
從數週至數年不等。為尋找 COVID-19 的替代草藥或營養療法,先前的研究發現,綠茶
中的表兒茶素-3-没食子兒茶素酸酯(EGCG)在體內和體外均能有效抑制 SARS-CoV-2 感
染,並抑制 SARS-CoV-2 刺突蛋白與血管收縮素轉化酶 2(ACE-2)在無細胞系統中的結
合。在這項研究中,我們使用 A549 肺癌細胞和 HepG2 肝癌細胞作為細胞系統,探究
EGCG 是否調節 ACE2 和第 II 型跨膜絲胺酸蛋白酶(TMPRSS2)的蛋白表達和轉位。在
A549 細胞中,EGCG 在 10-80 μM 的濃度下,處理後 24 小時傾向於增加 ACE2 和
TMPRSS2 蛋白表達,但在 48 小時處理後降低了它們的蛋白表達。在 HepG2 細胞中,
EGCG 在 24 小時處理下對 ACE2 和 TMPRSS2 蛋白表達產生了類似的影響,但在 48 小
時處理下未觀察到類似情況。當在 24 小時內檢測了兩種蛋白的轉位時,發現處理或不
處理 EGCG 的 A549 細胞膜(PM)部分未檢測到 ACE2,但在 EGCG 處理 24 小時後,其
在高密度微粒體(HDM)部分增加,在低密度(LDM)部分降低。然而,EGCG 被發現劑量
依賴地增加所有部分的 TMPRSS2 蛋白表達。有趣的是,在 48 小時處理下,80 μM 的
EGCG 傾向於增加所有部分的 ACE2 蛋白表達,但未改變 TMPRSS2 蛋白表達。在 HepG2
細胞中,EGCG 在 20 和 40 μM (80 μM 除外)的濃度下,在 24 小時處理後傾向於增加 PM
和 HDM 部分的 ACE2 和 TMPRSS2 蛋白表達。在 48 小時處理後,EGCG 傾向於增加
PM 中的 ACE2 而不是 TMPRSS2 蛋白表達,並在 HDM 和 LDM 部分不改變 ACE2 但增
加 TMPRSS2 的表達。這些結果表明,EGCG 調節 ACE2 和 TMPRSS2 蛋白的表達及其
從細胞質到細胞膜的轉位在細胞類型、處理劑量和處理時間上存在差異。這些發現可能
為 EGCG 對抗 COVID-19 感染以及進入人體肺細胞和肝細胞提供了細胞基礎。
摘要(英) Since the outbreak of COVID-19, over 700 million people worldwide have been infected,
with more than 6 million lives lost. Despite the availability of vaccines and some oral
medications, there are still many post-infection sequelae, which vary in duration from several
weeks to several years depending on the individual. To find an alternative herbal or nutritional
therapy for COVID-19, previous studies have found that green tea epigallocatechin-3-gallate
(EGCG) can effectively inhibit SARS-CoV-2 infection both in vivo and in vitro, and it
suppresses the binding of SARS-CoV-2 spike protein with angiotensin-converting enzyme
(ACE)-2 in the cell-free system. In this study using A549 lung and HepG2 liver cancer cells as
the cell-based systems, we investigated whether EGCG regulates the protein expression and
translocation of ACE2 and type II transmembrane serine protease (TMPRSS2). In A549 cells,
EGCG at 10-80 μM tended to increase ACE2 and TMPRSS2 protein levels after 24 h of
treatment, but it decreased their protein levels at 48 h. Similar effects of EGCG on ACE2 and
TMPRSS2 protein expressions in HepG2 cells were observed at 24 h but not at 48 h. When the
translocation of two proteins were examined at 24 h, the ACE2 was not detected in the plasma
membrane (PM) fraction of A549 cells treated with or without EGCG, but it was increased in
the high-density microsome (HDM) fraction and decreased in the low-density (LDM) fraction
after 24 h of EGCG treatment. However, EGCG was found to dose-dependently increase
TMPRSS2 protein levels in all the fractions. Interestingly, EGCG at 80 μM for 48 h tended to
increase ACE2 protein expression in all fractions but unaltered TMPRSS2 protein levels. In
HepG2 cells, EGCG at 20 and 40 μM but not 80 μM tended to increase ACE2 and TMPRSS2
protein levels in PM and HDM fractions after 24 h of treatment. At 48 h, EGCG tended to
increase ACE2 but not TMPRSS2 proteins in PM, while it unaltered ACE2 proteins and
increased TMPRSS2 in HDM and LDM fractions. These results suggest that EGCG
modulations of ACE2 and TMPRSS2 protein expressions and their translocation from cytosol
to plasma membrane vary with cell types, dose of treatment, and duration of treatment. These
findings may provide the cellular basis for the action of EGCG against the COVID-19 infection
and entry to human lung cells and liver cells.
關鍵字(中) ★ 綠茶兒茶素 關鍵字(英)
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 IV
表目錄 VIII
圖目錄 VIII
英文縮寫對照表 X
壹、緒論 1
1-1 ACE2 1
1-1-1介紹 3
1-1-2調控 3
1-1-3異構體(isoform)及修飾 2
1-2 TMPRSS2 2
1-2-1 介紹 2
1-3 Furin 2
1-3-1 介紹 2
1-4 COVID-19 3
1-4-1介紹 3
1-4-2冠狀病毒 3
1-4-3傳播及感染細胞途徑 3
1-4-1病毒複製 4
1-5 茶多酚 4
1-3-1 茶與EGCG 4
1-6 研究動機 5

貳、材料與方法 6
2-1實驗材料(Experimental materials) 6
2-2細胞培養(Cell culture) 6
2-3西方墨點法(Western blot) 7
2-4 次細胞分群(Subcellular fractionation) 9
2-5 統計(Statistics) 10
參、結果 11
3-1 ACE2蛋白質在不同細胞株表達量的差異 11
3-2 EGCG對A549細胞ACE2表達的影響 11
3-3 EGCG對A549細胞TMPRSS2表達的影響 11
3-4 EGCG對HepG2細胞ACE2表達的影響 12
3-5 EGCG對HepG2細胞TMPRSS2表達的影響 12
3-6 LPS對A549以及HepG2細胞ACE2/TMPRSS2表達的影響 12
3-7 EGCG對A549細胞Furin表達的影響 13
3-8 EGCG對HepG2細胞Furin表達的影響 13
3-9 EGCG對A549細胞ACE2在細胞內分佈的影響 13
3-10 EGCG對A549細胞TMPRSS2在細胞內分佈的影響 14
3-11 EGCG對A549細胞Furin在細胞內分佈的影響 14
3-12 EGCG對HepG2細胞ACE2在細胞內分佈的影響 15
3-13 EGCG對HepG2細胞TMPRSS2在細胞內分佈的影響 15
3-14 EGCG對HepG2細胞Furin在細胞內分佈的影響 16
3-15時間對人類肺癌細胞A549中對ACE2/TMPRSS2/Furin在細胞內分布的影響 16
3-16時間對人類肺癌細胞HepG2中對ACE2/TMPRSS2/Furin在細胞內分布的影響 16

肆、討論 17
伍、結論 19
陸、參考文獻 20
柒、附錄 40
參考文獻 [1] Y. Li, W. Zhou, L. Yang, and R. You, ‘Physiological and pathological regulation of
ACE2, the SARS-CoV-2 receptor’, Pharmacological Research, vol. 157, p. 104833, Jul.
2020, doi: 10.1016/j.phrs.2020.104833.
[2] M.-Y. Li, L. Li, Y. Zhang, and X.-S. Wang, ‘Expression of the SARS-CoV-2 cell receptor
gene ACE2 in a wide variety of human tissues’, Infect Dis Poverty, vol. 9, no. 1, p. 45,
Dec. 2020, doi: 10.1186/s40249-020-00662-x.
[3] H. Xu et al., ‘High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of
oral mucosa’, Int J Oral Sci, vol. 12, no. 1, Art. no. 1, Feb. 2020, doi: 10.1038/s41368-
020-0074-x.
[4] S. B. Gressens, G. Leftheriotis, J.-C. Dussaule, M. Flamant, B. I. Levy, and E. VidalPetiot, ‘Controversial Roles of the Renin Angiotensin System and Its Modulators During
the COVID-19 Pandemic’, Front. Physiol., vol. 12, p. 624052, Feb. 2021, doi:
10.3389/fphys.2021.624052.
[5] R. A. S. Santos et al., ‘Angiotensin-(1–7) is an endogenous ligand for the G proteincoupled receptor Mas’, Proc. Natl. Acad. Sci. U.S.A., vol. 100, no. 14, pp. 8258–8263,
Jul. 2003, doi: 10.1073/pnas.1432869100.
[6] T. M. Abd El-Aziz, A. Al-Sabi, and J. D. Stockand, ‘Human recombinant soluble ACE2
(hrsACE2) shows promise for treating severe COVID-19’, Sig Transduct Target Ther,
vol. 5, no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41392-020-00374-6.
[7] Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, and W. Zuo, ‘Single-cell RNA expression
profiling of ACE2, the receptor of SARS-CoV-2’. bioRxiv, p. 2020.01.26.919985, Apr.
09, 2020. doi: 10.1101/2020.01.26.919985.
[8] A. Fernández-Atucha et al., ‘Sex differences in the aging pattern of renin–angiotensin
system serum peptidases’, Biology of Sex Differences, vol. 8, no. 1, p. 5, Feb. 2017, doi:
10.1186/s13293-017-0128-8.
[9] J. C. Smith et al., ‘Cigarette Smoke Exposure and Inflammatory Signaling Increase the
Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract’,
Developmental Cell, vol. 53, no. 5, pp. 514-529.e3, Jun. 2020, doi:
10.1016/j.devcel.2020.05.012.
[10] K. B. Pedersen, K. H. Chhabra, V. K. Nguyen, H. Xia, and E. Lazartigues, ‘The
transcription factor HNF1α induces expression of angiotensin-converting enzyme 2
(ACE2) in pancreatic islets from evolutionarily conserved promoter motifs’, Biochimica
et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol. 1829, no. 11, pp. 1225–
1235, Nov. 2013, doi: 10.1016/j.bbagrm.2013.09.007.
[11] R. Zhang et al., ‘Role of HIF-1␣ in the regulation ACE and ACE2 expression in
hypoxic human pulmonary artery smooth muscle cells’, vol. 297, 2009.
21
[12] H. Xiu et al., ‘Fludarabine inhibits type I interferon-induced expression of the SARSCoV-2 receptor angiotensin-converting enzyme 2’, Cell Mol Immunol, vol. 18, no. 7, pp.
1829–1831, Jul. 2021, doi: 10.1038/s41423-021-00698-5.
[13] C. G. K. Ziegler et al., ‘SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene
in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across
Tissues’, Cell, vol. 181, no. 5, pp. 1016-1035.e19, May 2020, doi:
10.1016/j.cell.2020.04.035.
[14] G. Yu et al., ‘Acidic preconditioning reduces lipopolysaccharide‑induced acute lung
injury by upregulating the expression of angiotensin‑converting enzyme 2’,
Experimental and Therapeutic Medicine, vol. 21, no. 5, pp. 1–8, May 2021, doi:
10.3892/etm.2021.9879.
[15] Q. Liu et al., ‘miRNA-200c-3p is crucial in acute respiratory distress syndrome’, Cell
Discov, vol. 3, no. 1, p. 17021, Jun. 2017, doi: 10.1038/celldisc.2017.21.
[16] R. Zhang et al., ‘MiRNA let-7b promotes the development of hypoxic pulmonary
hypertension by targeting ACE2’, American Journal of Physiology-Lung Cellular and
Molecular Physiology, vol. 316, no. 3, pp. L547–L557, Mar. 2019, doi:
10.1152/ajplung.00387.2018.
[17] S. Fei, L. Cao, and L. Pan, ‘microRNA‑3941 targets IGF2 to control LPS‑induced acute
pneumonia in A549 cells’, Molecular Medicine Reports, vol. 17, no. 3, pp. 4019–4026,
Mar. 2018, doi: 10.3892/mmr.2017.8369.
[18] C. Blume et al., ‘A novel ACE2 isoform is expressed in human respiratory epithelia and
is upregulated in response to interferons and RNA respiratory virus infection’, Nat
Genet, vol. 53, no. 2, pp. 205–214, Feb. 2021, doi: 10.1038/s41588-020-00759-x.
[19] O. O. Onabajo et al., ‘Interferons and viruses induce a novel truncated ACE2 isoform
and not the full-length SARS-CoV-2 receptor’, Nat Genet, vol. 52, no. 12, pp. 1283–
1293, Dec. 2020, doi: 10.1038/s41588-020-00731-9.
[20] J. Sarker, P. Das, S. Sarker, A. K. Roy, and A. Z. M. R. Momen, ‘A Review on
Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease
Responsible for SARS-CoV-2 Spike Protein Activation’, Scientifica, vol. 2021, p.
e2706789, Jul. 2021, doi: 10.1155/2021/2706789.
[21] Z. Wang et al., ‘Significance of the TMPRSS2:ERG gene fusion in prostate cancer’, Mol
Med Rep, vol. 16, no. 4, pp. 5450–5458, Oct. 2017, doi: 10.3892/mmr.2017.7281.
[22] G. Thomas, ‘FURIN AT THE CUTTING EDGE: FROM PROTEIN TRAFFIC TO
EMBRYOGENESIS AND DISEASE’, Nat Rev Mol Cell Biol, vol. 3, no. 10, pp. 753–
766, Oct. 2002, doi: 10.1038/nrm934.
[23] D. Bestle et al., ‘TMPRSS2 and furin are both essential for proteolytic activation of
SARS-CoV-2 in human airway cells’, Life Sci. Alliance, vol. 3, no. 9, p. e202000786,
Sep. 2020, doi: 10.26508/lsa.202000786.
22
[24] C. Keller, E. Böttcher-Friebertshäuser, and M. Lohoff, ‘TMPRSS2, a novel host-directed
drug target against SARS-CoV-2’, Sig Transduct Target Ther, vol. 7, no. 1, Art. no. 1,
Jul. 2022, doi: 10.1038/s41392-022-01084-x.
[25] D. Wrapp et al., ‘Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation’, Science, vol. 367, no. 6483, pp. 1260–1263, Mar. 2020, doi:
10.1126/science.abb2507.
[26] M. M. Hatmal et al., ‘Comprehensive Structural and Molecular Comparison of Spike
Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with
ACE2’, Cells, vol. 9, no. 12, p. 2638, Dec. 2020, doi: 10.3390/cells9122638.
[27] D. X. Liu, J. Q. Liang, and T. S. Fung, ‘Human Coronavirus-229E, -OC43, -NL63, and -
HKU1 (Coronaviridae)’, Encyclopedia of Virology, pp. 428–440, 2021, doi:
10.1016/B978-0-12-809633-8.21501-X.
[28] J. Yang et al., ‘Molecular interaction and inhibition of SARS-CoV-2 binding to the
ACE2 receptor’, Nat Commun, vol. 11, no. 1, Art. no. 1, Sep. 2020, doi:
10.1038/s41467-020-18319-6.
[29] A. Milewska, M. Zarebski, P. Nowak, K. Stozek, J. Potempa, and K. Pyrc, ‘Human
Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target
Cells’, J Virol, vol. 88, no. 22, pp. 13221–13230, Nov. 2014, doi: 10.1128/JVI.02078-14.
[30] M. Yu, T. Zhang, W. Zhang, Q. Sun, H. Li, and J. Li, ‘Elucidating the Interactions
Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins—An Important
Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic’, Frontiers in
Molecular Biosciences, vol. 7, 2021, Accessed: Jan. 04, 2024. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fmolb.2020.628551
[31] W.-C. Chiou et al., ‘The inhibitory effects of PGG and EGCG against the SARS-CoV-2
3C-like protease’, Biochemical and Biophysical Research Communications, vol. 591, pp.
130–136, Feb. 2022, doi: 10.1016/j.bbrc.2020.12.106.
[32] P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, and V. Thiel, ‘Coronavirus biology and
replication: implications for SARS-CoV-2’, Nat Rev Microbiol, vol. 19, no. 3, pp. 155–
170, Mar. 2021, doi: 10.1038/s41579-020-00468-6.
[33] M. Jang et al., ‘Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARSCoV-2 3CL-Protease In Vitro’, Evidence-Based Complementary and Alternative
Medicine, vol. 2020, p. e5630838, Sep. 2020, doi: 10.1155/2020/5630838.
[34] E. Ohgitani et al., ‘Significant Inactivation of SARS-CoV-2 In Vitro by a Green Tea
Catechin, a Catechin-Derivative, and Black Tea Galloylated Theaflavins’, Molecules,
vol. 26, no. 12, p. 3572, Jun. 2021, doi: 10.3390/molecules26123572.
[35] R. Park et al., ‘Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces
Coronavirus Replication in a Mouse Model’, Viruses, vol. 13, no. 12, p. 2533, Dec.
2021, doi: 10.3390/v13122533.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明