參考文獻 |
[1] Y. Li, W. Zhou, L. Yang, and R. You, ‘Physiological and pathological regulation of
ACE2, the SARS-CoV-2 receptor’, Pharmacological Research, vol. 157, p. 104833, Jul.
2020, doi: 10.1016/j.phrs.2020.104833.
[2] M.-Y. Li, L. Li, Y. Zhang, and X.-S. Wang, ‘Expression of the SARS-CoV-2 cell receptor
gene ACE2 in a wide variety of human tissues’, Infect Dis Poverty, vol. 9, no. 1, p. 45,
Dec. 2020, doi: 10.1186/s40249-020-00662-x.
[3] H. Xu et al., ‘High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of
oral mucosa’, Int J Oral Sci, vol. 12, no. 1, Art. no. 1, Feb. 2020, doi: 10.1038/s41368-
020-0074-x.
[4] S. B. Gressens, G. Leftheriotis, J.-C. Dussaule, M. Flamant, B. I. Levy, and E. VidalPetiot, ‘Controversial Roles of the Renin Angiotensin System and Its Modulators During
the COVID-19 Pandemic’, Front. Physiol., vol. 12, p. 624052, Feb. 2021, doi:
10.3389/fphys.2021.624052.
[5] R. A. S. Santos et al., ‘Angiotensin-(1–7) is an endogenous ligand for the G proteincoupled receptor Mas’, Proc. Natl. Acad. Sci. U.S.A., vol. 100, no. 14, pp. 8258–8263,
Jul. 2003, doi: 10.1073/pnas.1432869100.
[6] T. M. Abd El-Aziz, A. Al-Sabi, and J. D. Stockand, ‘Human recombinant soluble ACE2
(hrsACE2) shows promise for treating severe COVID-19’, Sig Transduct Target Ther,
vol. 5, no. 1, Art. no. 1, Nov. 2020, doi: 10.1038/s41392-020-00374-6.
[7] Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, and W. Zuo, ‘Single-cell RNA expression
profiling of ACE2, the receptor of SARS-CoV-2’. bioRxiv, p. 2020.01.26.919985, Apr.
09, 2020. doi: 10.1101/2020.01.26.919985.
[8] A. Fernández-Atucha et al., ‘Sex differences in the aging pattern of renin–angiotensin
system serum peptidases’, Biology of Sex Differences, vol. 8, no. 1, p. 5, Feb. 2017, doi:
10.1186/s13293-017-0128-8.
[9] J. C. Smith et al., ‘Cigarette Smoke Exposure and Inflammatory Signaling Increase the
Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract’,
Developmental Cell, vol. 53, no. 5, pp. 514-529.e3, Jun. 2020, doi:
10.1016/j.devcel.2020.05.012.
[10] K. B. Pedersen, K. H. Chhabra, V. K. Nguyen, H. Xia, and E. Lazartigues, ‘The
transcription factor HNF1α induces expression of angiotensin-converting enzyme 2
(ACE2) in pancreatic islets from evolutionarily conserved promoter motifs’, Biochimica
et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol. 1829, no. 11, pp. 1225–
1235, Nov. 2013, doi: 10.1016/j.bbagrm.2013.09.007.
[11] R. Zhang et al., ‘Role of HIF-1␣ in the regulation ACE and ACE2 expression in
hypoxic human pulmonary artery smooth muscle cells’, vol. 297, 2009.
21
[12] H. Xiu et al., ‘Fludarabine inhibits type I interferon-induced expression of the SARSCoV-2 receptor angiotensin-converting enzyme 2’, Cell Mol Immunol, vol. 18, no. 7, pp.
1829–1831, Jul. 2021, doi: 10.1038/s41423-021-00698-5.
[13] C. G. K. Ziegler et al., ‘SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene
in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across
Tissues’, Cell, vol. 181, no. 5, pp. 1016-1035.e19, May 2020, doi:
10.1016/j.cell.2020.04.035.
[14] G. Yu et al., ‘Acidic preconditioning reduces lipopolysaccharide‑induced acute lung
injury by upregulating the expression of angiotensin‑converting enzyme 2’,
Experimental and Therapeutic Medicine, vol. 21, no. 5, pp. 1–8, May 2021, doi:
10.3892/etm.2021.9879.
[15] Q. Liu et al., ‘miRNA-200c-3p is crucial in acute respiratory distress syndrome’, Cell
Discov, vol. 3, no. 1, p. 17021, Jun. 2017, doi: 10.1038/celldisc.2017.21.
[16] R. Zhang et al., ‘MiRNA let-7b promotes the development of hypoxic pulmonary
hypertension by targeting ACE2’, American Journal of Physiology-Lung Cellular and
Molecular Physiology, vol. 316, no. 3, pp. L547–L557, Mar. 2019, doi:
10.1152/ajplung.00387.2018.
[17] S. Fei, L. Cao, and L. Pan, ‘microRNA‑3941 targets IGF2 to control LPS‑induced acute
pneumonia in A549 cells’, Molecular Medicine Reports, vol. 17, no. 3, pp. 4019–4026,
Mar. 2018, doi: 10.3892/mmr.2017.8369.
[18] C. Blume et al., ‘A novel ACE2 isoform is expressed in human respiratory epithelia and
is upregulated in response to interferons and RNA respiratory virus infection’, Nat
Genet, vol. 53, no. 2, pp. 205–214, Feb. 2021, doi: 10.1038/s41588-020-00759-x.
[19] O. O. Onabajo et al., ‘Interferons and viruses induce a novel truncated ACE2 isoform
and not the full-length SARS-CoV-2 receptor’, Nat Genet, vol. 52, no. 12, pp. 1283–
1293, Dec. 2020, doi: 10.1038/s41588-020-00731-9.
[20] J. Sarker, P. Das, S. Sarker, A. K. Roy, and A. Z. M. R. Momen, ‘A Review on
Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease
Responsible for SARS-CoV-2 Spike Protein Activation’, Scientifica, vol. 2021, p.
e2706789, Jul. 2021, doi: 10.1155/2021/2706789.
[21] Z. Wang et al., ‘Significance of the TMPRSS2:ERG gene fusion in prostate cancer’, Mol
Med Rep, vol. 16, no. 4, pp. 5450–5458, Oct. 2017, doi: 10.3892/mmr.2017.7281.
[22] G. Thomas, ‘FURIN AT THE CUTTING EDGE: FROM PROTEIN TRAFFIC TO
EMBRYOGENESIS AND DISEASE’, Nat Rev Mol Cell Biol, vol. 3, no. 10, pp. 753–
766, Oct. 2002, doi: 10.1038/nrm934.
[23] D. Bestle et al., ‘TMPRSS2 and furin are both essential for proteolytic activation of
SARS-CoV-2 in human airway cells’, Life Sci. Alliance, vol. 3, no. 9, p. e202000786,
Sep. 2020, doi: 10.26508/lsa.202000786.
22
[24] C. Keller, E. Böttcher-Friebertshäuser, and M. Lohoff, ‘TMPRSS2, a novel host-directed
drug target against SARS-CoV-2’, Sig Transduct Target Ther, vol. 7, no. 1, Art. no. 1,
Jul. 2022, doi: 10.1038/s41392-022-01084-x.
[25] D. Wrapp et al., ‘Cryo-EM structure of the 2019-nCoV spike in the prefusion
conformation’, Science, vol. 367, no. 6483, pp. 1260–1263, Mar. 2020, doi:
10.1126/science.abb2507.
[26] M. M. Hatmal et al., ‘Comprehensive Structural and Molecular Comparison of Spike
Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with
ACE2’, Cells, vol. 9, no. 12, p. 2638, Dec. 2020, doi: 10.3390/cells9122638.
[27] D. X. Liu, J. Q. Liang, and T. S. Fung, ‘Human Coronavirus-229E, -OC43, -NL63, and -
HKU1 (Coronaviridae)’, Encyclopedia of Virology, pp. 428–440, 2021, doi:
10.1016/B978-0-12-809633-8.21501-X.
[28] J. Yang et al., ‘Molecular interaction and inhibition of SARS-CoV-2 binding to the
ACE2 receptor’, Nat Commun, vol. 11, no. 1, Art. no. 1, Sep. 2020, doi:
10.1038/s41467-020-18319-6.
[29] A. Milewska, M. Zarebski, P. Nowak, K. Stozek, J. Potempa, and K. Pyrc, ‘Human
Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target
Cells’, J Virol, vol. 88, no. 22, pp. 13221–13230, Nov. 2014, doi: 10.1128/JVI.02078-14.
[30] M. Yu, T. Zhang, W. Zhang, Q. Sun, H. Li, and J. Li, ‘Elucidating the Interactions
Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins—An Important
Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic’, Frontiers in
Molecular Biosciences, vol. 7, 2021, Accessed: Jan. 04, 2024. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fmolb.2020.628551
[31] W.-C. Chiou et al., ‘The inhibitory effects of PGG and EGCG against the SARS-CoV-2
3C-like protease’, Biochemical and Biophysical Research Communications, vol. 591, pp.
130–136, Feb. 2022, doi: 10.1016/j.bbrc.2020.12.106.
[32] P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, and V. Thiel, ‘Coronavirus biology and
replication: implications for SARS-CoV-2’, Nat Rev Microbiol, vol. 19, no. 3, pp. 155–
170, Mar. 2021, doi: 10.1038/s41579-020-00468-6.
[33] M. Jang et al., ‘Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARSCoV-2 3CL-Protease In Vitro’, Evidence-Based Complementary and Alternative
Medicine, vol. 2020, p. e5630838, Sep. 2020, doi: 10.1155/2020/5630838.
[34] E. Ohgitani et al., ‘Significant Inactivation of SARS-CoV-2 In Vitro by a Green Tea
Catechin, a Catechin-Derivative, and Black Tea Galloylated Theaflavins’, Molecules,
vol. 26, no. 12, p. 3572, Jun. 2021, doi: 10.3390/molecules26123572.
[35] R. Park et al., ‘Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces
Coronavirus Replication in a Mouse Model’, Viruses, vol. 13, no. 12, p. 2533, Dec.
2021, doi: 10.3390/v13122533. |