博碩士論文 110421038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.224.43.50
姓名 王紫妘(Zih-Yun Wang)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 半導體晶圓廠的經濟性產能優化: 電腦模擬方法的應用
(Economic Capacity Optimization for Semiconductors Manufacturing Fabs: An Application of Computer Simulation Method)
相關論文
★ 企業流程為核心的食品產業運籌體系規劃:低溫物流部份★ 以企業流程方法規劃整體飛航後勤維修體系之研究
★ 成衣產業導入ERP運籌管理方案之個案研究★ 光電產業試產基地之生產最佳化模式:以光投影機為例
★ TFT LCD產業獲利因素之探討★ 科技事業進行合併/讓售之決策過程與成效之個案探討
★ 企業治理、風險及遵循解決方案導入之個案研究-以職責分離資訊系統為例★ 品質機能展開與多準則決策於設備開發應用
★ ERP導入品質因素對IFRS轉換專案之影響★ ERP投資金額對服務品質及導入後IT治理目標之分析
★ ERP 導入問題對專案的影響★ IFRS轉換對員工退休金計畫影響
★ IFRS轉換問題對IFRS效益的影響★ 電子產業新產品開發參考模式之發展
★ 應用資料科學方法提昇國防裝備可靠度之研究-以防空系統為例★ 企業資訊方案行銷歷程之探討-以MES為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-29以後開放)
摘要(中) 半導體產業其資本支出都較為龐大,且電子產業其產品生命周期較短的緣故,半導體製造商在面對龐大的投資金額以及身處高度競爭的環境之中,不僅要滿足顧客的要求,還必須能夠在短期之內進入市場才能在產品市場中具有競爭力,為此需要透過正確的機台組合達到快速供貨的能力,即提升資本的使用效率來增強企業的競爭力,因此萌生了研究如何讓晶圓廠達到經濟效益最優化的產出模式。
本研究之研究模型為將半導體晶圓廠預設十個加工工作區,假設當半導體市場需求資訊給定的情況下,根據起始解得出的機台數量,應用電腦模擬進行廠區模擬產生出相關的生產績效資料,再利用迴歸分析找出晶圓廠區中需要進行優化改善的工作區域,並運用模擬退火演算法有效率地做機台數量調整,以利在最短的時間內使生產及資本的效益最佳化。在本研究中之起始解及驗證解中可以發現,生產績效部分,產出率增加了0.18%、在製品數量減少0.13%、製造時間也減少了0.30%,證實本研究方法找出之關鍵影響工作區對於廠區之整體作用是有顯著影響力的。
摘要(英) The semiconductor industry requires significant capital expenditures, and due to the short product lifecycle in the electronics industry, semiconductor manufacturers face immense investment costs and a highly competitive environment. They not only need to meet customer demands but also must enter the market quickly to remain competitive in the product market. To achieve this, they need the capability to rapidly supply products through the right combination of equipment, thus improving the efficiency of capital utilization and enhancing the competitiveness of the company. As a result, there is a need to study how to optimize the production mode of wafer fabs to achieve the best economic benefits.
The research model in this study assumes ten processing zones in a semiconductor wafer fab. Under the given semiconductor market demand information, the initial solution determines the number of equipment required. Computer simulations are then applied to generate relevant production performance data for the fab. Regression analysis is used to identify the areas in the wafer fab that require optimization and improvement, and an efficient simulated annealing algorithm is employed to adjust the number of equipment, aiming to optimize production and capital efficiency in the shortest possible time. Through the initial and validation solutions in this study, it was found that in terms of production performance, the output rate increased by 0.18%, the work-in-process quantity decreased by 0.13%, and the manufacturing time decreased by 0.30%. This confirms that the key affected areas identified by the research methodology have a significant impact on the overall operation of the wafer fab.
關鍵字(中) ★ 半導體製程
★ 產能規劃
★ 電腦模擬
★ 迴歸分析
★ 模擬退火演算法
關鍵字(英) ★ semiconductor manufacturing
★ capacity planning
★ computer simulation
★ regression analysis
★ simulated annealing algorithm
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
第二章 半導體製程及其產業特性 3
2.1 半導體製程簡介 3
2.1.1半導體製程 3
2.1.2晶圓廠製造流程 3
2.2半導體產業特性及管理問題 6
2.2.1半導體產業特性 6
2.2.2半導體生產系統的特性 9
2.2.4半導體產業管理問題分析 10
第三章 文獻回顧 12
3.1半導體工廠產能規劃模式介紹 12
3.1.1數學規劃模式 12
3.1.2等候網路模式 13
3.1.3模擬模式 14
3.1.4迴歸分析 15
3.2啟發式演算法 16
3.2.1爬山法搜尋 17
3.2.2模擬退火演算法 17
3.3綜合論述 19
第四章 方法發展 20
4.1問題描述與定義 20
4.1.1 半導體廠的產能配置 20
4.1.2半導體廠的經濟考量 21
4.1.3 模型假設 22
4.2機台起始解的建構 23
4.3判斷關鍵工作區域 25
4.4機台數量調整方法-模擬退火演算法 26
4.5關鍵工作區域判定與最適機台配置決策之架構 30
第五章 實例驗證 31
5.1模擬環境設定 31
5.2最適產能機台配置 34
5.2.1各工作區機台數量之起始解 34
5.2.2迴歸分析-關鍵機台選擇 35
5.2.3模擬退火演算法 39
5.3實驗數值分析與結果 43
第六章 結論 45
6.1結論 45
6.2研究限制與後續研究 46
參考文獻 47
附錄 51

參考文獻 朱敬一、毛慶生、林全、許松根、陳添枝、陳思寬、黃朝熙、管中閔(2015)。基礎經濟學(7 ed.)。臺北市:華泰文化事業股份有限公司。
余業鑫(2003)。以生產力為觀點的半導體晶圓廠產能規劃方法。國立清華大學工業工程與工程管理學系研究所碩士論文,新竹,1-82。
呂麗香(2006)。以規模經濟的觀點探討半導體晶圓廠產能規劃之研究: 一個以系統模擬為基礎的方法。國立中央大學企業管理學系研究所碩士論文,桃園,1-59。
國際半導體產業協會(2023)。SEMI全球晶圓廠預測報告出爐,半導體設備支出2024年復甦回升。2023年5月3日取自:https://www.semi.org/zh/semi_world_fab_forecast_wff_Q12023
馬瑞龍(2017)。應用X理論找出半導體晶圓廠中產能瓶頸區域之研究。國立中央大學企業管理學系研究所碩士論文,桃園,1-63。
楊雲凱(2015)。物理氣相沉積(PVD)介紹。國家奈米元件實驗室奈米通訊,22(4),33-35。
臺灣EE Times(2021)。半導體技術下一步往哪走。2023年5月3日取自:https://www.eettaiwan.com/20210319nt31-breaking-the-limitation-of-semiconductor-manufacturin-techs/
Abdinnour‐Helm, S. (2001). Using simulated annealing to solve the p‐Hub Median Problem. International Journal of Physical Distribution & Logistics Management, 31(3), 203-220.
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear Programming: Theory and Algorithms (3 ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.
Bermon, S., & Hood, S.J. (1999). Capacity optimization planning system (CAPS). Interfaces, 29(5), 31-51.
Bretthauer, K. M. (1995). Capacity planning in networks of queues with manufacturing application. Mathematical and Computer Modelling, 21(12), 35-46.
Chien, C. F., & Chen, C. (2007). Using GA & CTPN for modeling the optimization- based schedule generator of a generic production scheduling system. International Journal of Production Research, 45(8), 1763–1789.
Chien, C. F., Hsu, C. Y., & Chang, K. H. (2013). Overall wafer effectiveness (OWE): A novel industry standard for semiconductor ecosystem as a whole. Computers & Industrial Engineering, 65(1), 117-127.
Chou, Y. C., & Hong, L. H. (2000). A methodology for product mix planning in semiconductor foundry manufacturing. IEEE Transactions on Semiconductor Manufacturing, 13(3), 278-285.
Dabbas, R. M., & Fowler, J. W. (2003). A new scheduling approach using combined dispatching criteria in wafer fabs. IEEE Transactions on Semiconductor Manufacturing, 16(3), 501-510.
Dengiz, B., İç, Y. T., & Belgin, O. (2016). A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120, 120-128.
Grosbard, D., Kalir, A., Tirkel, I., & Rabinowitz, G. (2013). A Queuing Network Model for Wafer Fabrication Using Decomposition without Aggregation. Paper presented at the IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA.
Hillier, F. S., & Hillier, M. S. (2010). Introduction to Management Science: A Modeling and Case Studies Approach with Spreadsheets (4 ed.).USA: Mcgraw Hill Higher Education.
Hillier, F. S., & Lieberman, G. J. (2010). Introduction to Operations Research (9 ed.). 1221 Avenue of the Americas, New York, NY 10020: Raghothaman Srinivasan.
Hood, S. J., Bermon, S., & Barahona, F. (2003). Capacity planning under demand uncertainty for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 16(2), 273 - 280.
Huang, C. W., and Lin, J. T. (2016). A pre-dispatching vehicle method for a diffusion area in a 300 mm wafer fab. Journal of Industrial and Production Engineering, 33(8), 579-591.
Karabuk, S., & Wu, S. D. (2003). Coordinating strategic capacity planning in the semiconductor industry. Operations Research, 51(6), 839-849.
Kishimoto, M., Ozawa, K., Watanabe, K., and Martin, D. (2001). Optimized operations by extended X-factor theory including unit hours concept, IEEE Transactions on Semiconductor Manufacturing, 14(3), 187-195.
Leachman, R. C., & Dessouky, M. M. (1997). Dynamic Models of Production with Multiple Operations and General Processing Times. The Journal of the Operational Research Society, 48(6), 647-654.
Lee, Y., & Roh, Y. (2022). Regression Yield Analysis for Semiconductor Manufacturing Based on Fabrication Conditions. Paper presented at the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan.
Li, N., Jiang, Z., Liu, G., & Zhang, Z. (2012). Analysis of quality-caused re-entrance electrical test system in semiconductor manufacturing by Markov method. International Journal of Production Research, 50(12), 3486-3497.
Liu, X., Zhang, B., & Du, F. (2014). Integrating Relative Coordinates with Simulated Annealing to Solve a Traveling Salesman Problem. Paper presented at the 2014 Seventh International Joint Conference on Computational Sciences and Optimization, Beijing, China.
Martin, D. P. (1997). How the law of unanticipated consequences can nullify the theory of constraints: The case for balanced capacity in a semiconductor manufacturing line. Paper presented at the 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop ASMC 97 Proceedings, Cambridge, MA, USA.
Norvig, P., & Russell, S. (2021). Artificial Intelligence: A Modern Approach (4 ed.). United Kingdom: Pearson Education.
Ozawa, K., Wada, H., & Yamaguchi, T. (1999). Optimum tool planning using the X-factor theory. Paper presented at the 1999 IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings, Santa Clara, CA, USA.
Poole, D. L., & Mackworth, A. K. (2017). Artificial Intelligence: Foundations of Computational Agents (2 ed.). United Kingdom: Cambridge University Press.
Puma, G. L., Bono, A., Krishnaiag, d., Collin, J. G. (2008). Prepareation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical capor deposition: A review paper. Journal of Hazardous Materials, 157(2-3), 209-219.
Sajid, M., Jafar, A., & Sharma, S. (2020). Hybrid Genetic and Simulated Annealing Algorithm for Capacitated Vehicle Routing Problem. Paper presented at the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India.
Schropp, R. E. I., Stannowski, B., Brockhoff, A. M., Van Veenendaal, P. A. T. T., & Rath, J. K. (2000). Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells. Materials Physics and Mechanics, 1(2), 73-82.
Seidel, G., Lee, C. F., Tang, A. Y., Low, S. L., Gan, B. P., & Scholl, W. (2020). Challenges Associated with Realization of Lot Level Fab Out Forecast in a Giga Wafer Fabrication Plant. Paper presented at the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA.
Semiconductor Industry Association(2007). Global Chip Sales Hit Record $247.7 Billion in 2006. May 03, 2023 retrieved from: https://www.semiconductors.org/global-chip-sales-hit-record-247-7-billion-in-2006/
Semiconductor Industry Association(2023). Global Semiconductor Sales Increase 3.3% in 2022 Despite Second-Half Slowdown. May 03, 2023 retrieved from: https://www.semiconductors.org/global-semiconductor-sales-increase-3-2-in-2022-despite-second-half-slowdown/.
Stevenson, W. J. (1999). Production operations management (6th eds). Boston: Irwin.
Tabachnick, B. G., & Fidell, L. S. (2000). Using Multivariate Statistics (4 ed.). Boston: Allyn & Bacon.
Uzsoy, R., Lee, C. Y., & Martin-Vega, L. A. (1992). A review of production planning and scheduling models in the semiconductor industry. Part I: System characteristics, performance evaluation and production planning. IIE Transactions, 24(4), 47-60.
Van Zant Peter. (2014). Microchip fabrication: a practical guide to semiconductor processing (6th ed.). New York: McGraw-Hill.
Wu, S. D., Erkoc, M., & Karabuk, S. (2005). Managing capacity in the high-tech industry: A review of literature. The Engineering Economists, 50(2), 125-158.
指導教授 呂俊德(Jun-Der Leu) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明