博碩士論文 107682004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.143.203.73
姓名 陳炳誠(Bing-Cheng Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 井測資料於臺灣中央山脈北部地熱區之解釋及應用
(Interpretation and Application of Well Log Data to the Geothermal Region in the Northern Central Range of Taiwan)
相關論文
★ 台灣淺灘沉積物組成與物源分析★ Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes
★ 臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示★ Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan
★ 因應高速飽和水斷層泥變形之壓力閥研製★ 臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵
★ 南中國海東北部過去三萬八千年以來的古海洋變化★ 以摩擦試驗探討斷層滑移對於微生物生存的影響
★ 臺灣西南部車瓜林斷層之斷層岩石及變形機制★ The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip
★ 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制★ 蛇紋岩斷層帶內的橄欖石與頑火輝石可為地震破裂指標
★ 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義★ 閃電化石的生成與蝕變—以金門花崗片麻岩上的閃電熔岩為例
★ 臺灣米崙斷層之斷層帶特徵及其隱示:以 MiDAS岩芯為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 與裂隙、斷層相關的透水地質構造被認為是台灣東北部低度變質岩區的主要地熱流體上湧管道。從1970年代至1990年代早期有一個期間的地熱鑽井與開發,但當時對於地下地熱地質情況尚無法深入瞭解。本論文研究了仁澤地熱區仁澤3號與仁澤4號地熱井的測井曲線和微電阻影像測井,以了解台灣低度變質岩區地下透水地質構造特徵。
測井曲線和微電阻影像測井資料,以確定地下裂隙和流體流動的可能途徑。由測井資料分析,本研究認為現代的測井資料在低度變質岩區會對透水結構有響應,故可辨視透水裂隙的存在。在微電阻影像測井上,本研究拾取了地層層面、天然開放裂縫及封閉裂隙等地質特徵。整合測井解釋、裂隙位態及裂隙密集度等資訊,本研究證實地下主要的透水地質構造為:1. 以斷層角礫岩為主要結構的斷層核芯與2.大量透水破裂面為特徵的斷層破裂帶。絕大部分開放裂隙為東北-西南方向,與目前區域大地水平最小主應力方向垂直。
本研究發現仁澤地熱區為一個東北-西南走向的狹窄斷層相關地熱系統。此透水的斷層系統的位態約是N50˚-70˚E,向西北方向傾斜70˚-90˚。斷層系統的水平的寬度約為200公尺。斷層系統內部包含了數個斷層帶。斷層帶內發育有透水斷層角礫岩及開放裂隙面。此斷層系統及內部的透水地質構造的發育及特性與岩性及近期台灣東北部的伸張大地構造狀態有關。本研究的資料及研究方法有利於台灣未來的地熱探勘與開發。
摘要(英) Permeable geological structures associated with fractures and faults are considered to be the main upwelling conduits for geothermal fluids in the low-grade metamorphic areas of northeastern Taiwan. From 1970s to early 1990s, there was a period of geothermal drilling and development, but at that time, it was not easy to understand the subsurface geothermal geology. This thesis studied the standard open-hole logs and micro-resistivity formation image (FMI) log of the JT-3 and JT-4 wells in the Jentse geothermal area in order to understand the characteristics of subsurface permeable structures in the low-grade metamorphic rock area of Taiwan.
The standard open-hole logs and FMI images were used to identify possible conduits of subsurface fractures and fluid flow. This study concluded that modern standard open-hole log data would respond to permeable structures could be used to identify the presence of permeable fractures in low-level metamorphic rocks of Taiwan. On the FMI images, this study picked geological features such as bedding planes, natural open fractures and closed fractures. Integrating the interpretation results of standard open-hole logs, orientations of fractures and fracture densities, this thesis confirms that the main permeable geological structures in the subsurface are 1. fault cores with fault breccia and 2. fault damage zones characterized by a large number of permeable open fracture planes. The majority of open fractures are oriented northeast-southwest, perpendicular to the direction of current regional minimum horizontal stress.
This thesis found that the Jentse geothermal area is a narrow northeast-southwest trending fault-related geothermal system. The strike of this permeable fault system is approximately N50˚-70˚E and dips 70˚-90˚ to the northwest. The horizontal width of the fault system is approximately 200 meters. It contains several fault zones within the fault system. Permeable fault breccias and open fracture surfaces are developed within the fault zones. The development and characteristics of this fault system and the permeable geologic structures within it are related to lithology and the recent tectonic rifting of northeastern Taiwan. The results and methodology of this thesis would be beneficial for future geothermal exploration and development in Taiwan.
關鍵字(中) ★ 斷層相關地熱系統
★ 低度變質岩
★ 透水結構
★ 微電阻影像測井
★ 測井解釋
關鍵字(英) ★ Fault-related geothermal system
★ Low-grade metamorphic rock
★ Permeable structure
★ FMI borehole images
★ Standard open-hole log interpretation
論文目次 摘要 i
ABSTRACT ii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
CHAPTER 1 INTRODUCTION 1
1.1 IMPORTANCE AND CHALLENGES OF GEOTHERMAL EXPLORATION IN THE SLATE BELT OF TAIWAN 1
1.2 THE GEOLOGICAL CHARACTERISTICS OF THE SLATE BELT AND ITS RELATIONSHIP TO GEOTHERMAL ENERGY 4
1.3 STUDY OF FRACTURES USING STANDARD OPEN HOLE LOGS AND BOREHOLE IMAGES 1
1.4 AIM AND OBJECTIVES OF THE STUDY 2
CHAPTER 2 GEOLOGICAL SETTING 4
2.1 THE TECTONIC SETTING OF THE NORTHERN EASTERN TAIWAN 5
2.2 LITHOLOGY OF THE STUDY AREA 6
2.3 GEOLOGICAL STRUCTURES OF THE STUDY AREA 7
2.4. GEOTHERMAL EXPLORATION HISTORY OF THE STUDY AREA 7
CHAPTER 3 DATA AND METHODOLOGY 10
3.1 WELL LOGS USED IN THIS STUDY 10
3.1.1 Well logs of the JT-3 well used in this study 10
3.1.2 Well logs of the JT-4 well used in this study 10
3.2 The interpretations of standard open-hole logs 11
3.2.1 Quality check of the standard open-hole logs 11
3.2.2 Shale volume (Vsh) and lithology determination 12
3.2.3 Effective porosity (PHIE) calculations 13
3.3 INTRODUCTION OF THE FMI LOGS 14
3.4 FMI INTERPRETATION WORKFLOW 14
3.4.1 Data processing and image data quality 14
3.4.2 Procedures of the FMI image interpretations 14
3.5 STATISTICS AND DATA INTEGRATION OF FRACTURE POROSITY AND FRACTURE DENSITY 15
CHAPTER 4 RESULTS 21
4.1 THE RESULTS OF STANDARD OPEN-HOLE LOG INTERPRETATION 21
4.1.1 The results of the JT-3 well 21
4.1.2 The results of the JT-4 well 21
4.2 ORIENTATIONS OF FORMATION BEDS 22
4.2.1 The Orientations of formation beds of the JT-3 well 22
4.2.2 The Orientations of formation beds of the JT-4 well 23
4.3 TYPES AND ORIENTATIONS OF FRACTURE PLANES 23
4.3.1 Types and orientations of fracture planes of the JT-3 well 23
4.3.2 Types and orientations of fracture planes of the JT-4 well 24
4.4 ZONING BY FRACTURE CHARACTERISTICS 24
4.4.1 Fracture zones of the JT-3 well 24
4.4.2 Fracture zones of the JT-4 well 25
4.5 FRACTURE DENSITY, APERTURE, AND POROSITY STATISTICS 26
CHAPTER 5 DISCUSSION 38
5.1 THE LOG RESPONSES REFLECTING LITHOLOGY AND FRACTURE FEATURES 38
5.2 IMPLICATIONS OF THE DEFLECTIONS OF THE TEMPERATURE LOG 39
5.3 THE CHARACTERISTICS OF THE FAULT ZONES 40
5.4 CONTROLLING FACTORS OF THE DEVELOPMENT AND PROPERTIES OF POROUS FAULT ZONES 40
5.4.1 Lithology 40
5.4.2 Fracturing related to recent tectonic activity 41
5.4.3 Structural heterogeneity within the fault zone 41
5.5 THE ORIENTATION AND WIDTH OF THE PERMEABLE FAULT SYSTEM IN JENTSE 42
5.6 THE RELATIONSHIP BETWEEN FAULTS, FRACTURES, AND THE TECTONICS OF THE REGION 43
CHAPTER 6 CONCLUSION 47
6.1 SUMMARY 47
6.2 FUTURE SCOPE 48
REFERENCES 49
參考文獻 Ameen, M. S. (2014). Fracture and in-situ stress patterns and impact on performance in the Khuff structural prospects, eastern offshore Saudi Arabia. Marine and Petroleum Geology, 50, 166–184.
Angelier, J., Chang, T. Y., Hu, J. C., Chang, C. P., Siame, L., Lee, J. C., Deffontaines, B., Chu, H. T., &Lu, C. Y. (2009). Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics, 466(3–4), 356–376.
Barton, C. A., &Zoback, M. D. (2002). Discrimination of Natural Fractures From Drilling-Induced Wellbore Failures in Wellbore Image Data - Implications for Reservoir Permeability. SPE Reservoir Evaluation & Engineering, 5(03), 249–254.
Bengtson, C. A. (1981). Statistical curvature analysis techniques for structural interpretation of dipmeter data. American Association of Petroleum Geologists Bulletin, 65(2), 312–332.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., &Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171–192.
Caine, Jonathan, S., Evans, James, P., &Forster, Craig, B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028.
Chang, P. Y., Ho, G. R., Chen, C. C., Hsu, H. L., Chen, C. S., &Yeh, E. C. (2020). An analysis of the subsurface fault systems with audio-magnetotelluric surveys in the western Ilan Plain of NE Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(5), 551–564.
Chang, P. Y., Lo, W., Song, S. R., Ho, K. R., Wu, C. S., Chen, C. S., Lai, Y. C., Chen, H. F., &Lu, H. Y. (2014). Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics, 50, 91–100.
Chang, Y.K., Lee, H.S., Yang, J.H., Wu, G.H., &Lee., J.Y. (1986). Geological Report of the Jentse and Tuchang Geothermal area, Ilan. CPC Corporation Taiwan. P.24 (in Chinese).
Chen, B. C., Perdana, T., &Kuo, L. W. (2021). Fluid flow and fault-related subsurface fractures in slate and metasandstone formations: A case study of the Jentse Geothermal Area, Taiwan. Geothermics, 89(300), 101986.
Chen, C. H. (1985). Chemical characteristics of thermal waters in the Central Range of Taiwan, R.O.C. Chemical Geology, 49(1–3), 303–317.
Chen, C. T., Chan, Y. C., Beyssac, O., Lu, C. Y., Chen, Y. G., Malavieille, J., Kidder, S. B., &Sun, H. C. (2019). Thermal History of the Northern Taiwanese Slate Belt and Implications for Wedge Growth During the Neogene Arc-Continent Collision. Tectonics, 38(9), 3335–3350.
Chiang, C. W., Hsu, H. L., &Chen, C. C. (2015). An investigation of the 3D electrical resistivity structure in the Chingshui geothermal area, NE Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 26(3), 269–281.
CPC (1984) CPC-JT-2T well drilling report. CPC Corporation Taiwan. P.55 (Chinese content).
Crain, P. Eng. (2013). Crain’s Petrophysical Handbook [Internet].
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., &Withjack, M. O. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557–1575.
Gray, M. B., Stamatakos, J. A., Ferrill, D. A., &Evans, M. A. (2005). Fault-zone deformation in welded tuffs at Yucca Mountain, Nevada, USA. Journal of Structural Geology, 27(10), 1873–1891.
Hamahashi, M., Hamada, Y., Yamaguchi, A., Kimura, G., Fukuchi, R., Saito, S., Kameda, J., Kitamura, Y., Fujimoto, K., &Hashimoto, Y. (2015). Multiple damage zone structure of an exhumed seismogenic megasplay fault in a subduction zone - A study from the Nobeoka Thrust Drilling Project. Earth, Planets and Space, 67(1), 1–21.
Hennings, P., Allwardt, P., Paul, P., Zahm, C., Reid, R., Alley, H., Kirschner, R., Lee, B., &Hough, E. (2012). Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia. AAPG Bulletin, 96(4), 753–772.
Hesthammer, J., &Fossen, H. (1998). The use of dipmeter data to constrain the structural geology of the Gullfaks Field, northern North Sea. Marine and Petroleum Geology, 15(6), 549–573.
Ho, G. R., Chang, P. Y., Lo, W., Liu, C. M., &Song, S. R. (2014). New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the Chingshui-Sanshing-Hanchi area of Southwestern Ilan County, NE Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 25(4), 491–504.
Holland, M., Urai, J. L., van derZee, W., Stanjek, H., &Konstanty, J. (2006). Fault gouge evolution in highly overconsolidated claystones. Journal of Structural Geology, 28(2), 323–332.
Houwers, M. E., Heijnen, L. J., Becker, A., &Rijkers, R. (2015). A Workflow for the Estimation of Fault Zone Permeability for Geothermal Production A General Model Applied on the Roer Valley Graben in the Netherlands. Proceedings World Geothermal Congress 2015, April, 9.
Hsiao, P.T., Chiang, S.C., (1979). Geology and geothermal system of the Chingshui-Tuchang geothermal area, Ilan, Taiwan. Pet. Geol. Taiwan 16, 205–213.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., &Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1–2), 4–18.
Huang, H. H., Shyu, J. B. H., Wu, Y. M., Chang, C. H., &Chen, Y. G. (2012). Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension. Journal of Geophysical Research: Solid Earth, 117(1), 1–13.
Huang, Y. H., Liu, H. L., Song, S. R., &Chen, H. F. (2018). An ideal geothermometer in slate formation: A case from the Chingshui geothermal field, Taiwan. Geothermics.
Jarzyna, J. A., Baudzis, S., Janowski, M., & Puskarczyk, E. (2021). Geothermal resources recognition and characterization on the basis of well logging and petrophysical laboratory data, Polish case studies. Energies, 14(4).
Jeppson, T. N., Bradbury, K. K., &Evans, J. P. (2010). Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. Journal of Geophysical Research: Solid Earth, 115(12), 1–20.
Jolie, E., Moeck, I., &Faulds, J. E. (2015). Quantitative structural-geological exploration of fault-controlled geothermal systems-A case study from the Basin-and-Range Province, Nevada (USA). Geothermics, 54, 54–67.
Kuo, L.W., Song, S.R., Yeh, E.C., & Chen, H.F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implication. Geophysical Research Letters, 36, L18306.
Kuo, L.W., H. Li, S. Smith, G. Di Toro, J. Suppe, S. R. Song, S. Nielsen, H. S. Sheu & J. Si (2014). Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake, Geology 42, 47–50, doi: 10.1130/G34862.1.
Kuo, L.W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., Li, H., Suppe, J., Si, J., & Wen, C.-Y. (2017). Fault gouge graphitization as evidence of past seismic slip. Geology, 45(11), 979-982, doi:10.1130/G39295.1.
Lai, K. Y., Chen, Y. G., Wu, Y. M., Avouac, J. P., Kuo, Y. T., Wang, Y., Chang, C. H., &Lin, K. C. (2009). The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: Evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough. Geophysical Journal International, 179(2), 678–686.
Lee, H.S., & Lee, J.Y. (1983) Subsurface geological report of the CPC-JT-1T geothermal well in the Jentse geothermal district I Lan. CPC Corporation Taiwan, p.19 (Chinese content)
Lee, J. C., Angelier, J., &Chu, H. T. (1997). Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: The Lishan Fault. Tectonophysics, 274(1–3), 97–115.
Lin, C. H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324(3), 189–201.
Lin, C.W., &Lin, W.H., (1995). Explanatory Text of the Geologic Map of Taiwan Sanshin. Sheet 15, Cent. Geol. Surv. MOEA, Taiwan (Chinese content).
Liotta, D., Brogi, A., Ruggieri, G., &Zucchi, M. (2021). Fossil vs. active geothermal systems: A field and laboratory method to disclose the relationships between geothermal fluid flow and geological structures at depth. Energies, 14(4).
Liu, C. M., Song, S. R., &Kuo, C. H. (2015). Silica geothermometry applications in the Taiwan orogenic belt. Terrestrial, Atmospheric and Oceanic Sciences, 26(4), 387–396.
Lu, Y. C., Song, S. R., Lin, P. H., Taguchi, S., Wang, C., Lai, Y. M., Peng, T. R., &Lee, H. F. (2020). Thermal Fluid Changes after Operating a Geothermal System: A Case Study of the Chingshui Geothermal Field, Taiwan. Geothermics, 87.
Lu, Y. C., Song, S. R., Taguchi, S., Wang, P. L., Yeh, E. C., Lin, Y. J., MacDonald, J., &John, C. M. (2018). Evolution of hot fluids in the Chingshui geothermal field inferred from crystal morphology and geochemical vein data. Geothermics, 74(June), 305–318.
Lu, Y. C., Song, S. R., Wang, P. L., Wu, C. C., Mii, H. S., MacDonald, J., Shen, C. C., &John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences, 149, 124–133.
Luthi, S. M., &Souhaite, P. (1990). Fracture apertures from electrical borehole scans. 1990 SEG Annual Meeting, 55(7), 18–21.
Lyu, W., Zeng, L., Zhang, B., Miao, F., Lyu, P., &Dong, S. (2017). Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China. Marine and Petroleum Geology, 83, 60–72.
Micarelli, L., Benedicto, A., &Wibberley, C. A. J. (2006). Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology, 28(7), 1214–1227.
Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867–882.
Peska, P., & Zoback, M. D. (1995). Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. Journal of Geophysical Research, 100(B7).
Priest, S. D. (1993). Discontinuity Analysis for Rock Engineering. In Discontinuity Analysis for Rock Engineering.
Rowland, J.V., &Sibson, R. H. (2004). Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4(4), 259–283.
Schlumberger, (1986) Dipmeter Interpretation Fundamentals: New York, Schlumberger Ltd., 76 p.
Schlumberger, (2015). Techlog wellbore imaging User Manual.
Serra, O., & Serra, L. (2003). Well Logging and Geology.
Shen, T. T., Liu, T. K., Huang, S. Y., Hsieh, P. S., &Wu, C. Y. (2020). Post-collisional exhumation and geotherm pattern in northern Tananao Complex, northeastern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 31(4), 369–381.
Shih, R. C., Wang, C. Y., Chen, W. S., Wang, Y. K., Kuo, H. Y., Yen, T. C., Chang, Y. F. (2018). Seismic reflection profiling of the first deep geothermal field in Taiwan. Geothermics, 74, 255–272.
Sibson, R. H. (1994). Crustal stress, faulting and fluid flow. Geological Society Special Publication, 78.
Shyu, J. B. H., Sieh, K., Chen, Y. G., &Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(8), 1–33.
Song, S.R., &Lu, Y.C. (2019). Geothermal Explorations on the Slate Formation of Taiwan. In Renewable Geothermal Energy Explorations. IntechOpen.
Su, F. C., (1978). Resistivity survey in the Chingshui prospect, Ilan, Taiwan. Petrol. Geol. Taiwan, 16, 255-264.
Su, Z., Hu, J. C., Wang, E., Li, Y., Yang, Y., &Wang, P. L. (2018). Monitoring interseismic activity on the Ilan Plain (NE Taiwan) using Small Baseline PS-InSAR, GPS and leveling measurements: Partitioning from arc-continent collision and backarc extension. Geophysical Journal International, 212(1), 264–283.
Taguchi, S., &Nakamura, M. (1991). Subsurface thermal structure of the Hatchobaru geothermal system, Japan, determined by fluid inclusion study. Geochemical Journal, 25(4), 301–314.
Tearpock, D. J., Bischke, R. E., & Walker, L. G. (2003). Applied subsurface geological mapping with structural methods. Upper Saddle River, N.J: Prentice Hall PTR.
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949–952.
Teng, L. S., &Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geological Society Special Publication, 226(August), 313–332.
Terzaghi, R. D., (1965). Sources of error in joint surveys: Geotechnique, v. 15, no. 3, p. 287-304.
Tong, L. T., Ouyang, S., Guo, T. R., Lee, C. L. C. R. C. L., Hu, K. H., Lee, C. L. C. R. C. L., &Wang, C. J. (2008). Insight into the geothermal structure in Chingshui, Ilan, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(4), 413–424.
Townend, J., Sutherland, R., Toy, V. G., Eccles, J. D., Boulton, C., Cox, S. C., &McNamara, D. (2013). Late-interseismic state of a continental plate-bounding fault: Petrophysical results from DFDP-1 wireline logging and core analysis, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 14(9), 3801–3820.
Tseng, C.S. (1978). Geology and geothermal occurrence of the Chingshui and Tuchang districts, Ilan. Pet. Geol. Taiwan 15, 11–23 (Chinese content with English abstract).
Van DerVoet, E., Laenen, B., Rombaut, B., Kourta, M., &Swennen, R. (2020). Fracture characteristics of Lower Carboniferous carbonates in northern Belgium based on FMI log analyses. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2020.
Vidal, J., Hehn, R., Glaas, C., & Genter, A. (2019). How Can Temperature Logs Help Identify Permeable Fractures and Define a Conceptual Model of Fluid Circulation? An Example from Deep Geothermal Wells in the Upper Rhine Graben. Geofluids, 2019.
Wallis, I. C., McNamara, D. D., Rowland, J. v., & Massiot, C. (2012). The nature of fracture permeability in the basement greywacke at Kawerau geothermal Field, New Zealand. Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford.
Yamada, M., Iguchi, K., Nakanishi, S., &Todaka, N. (2000). Reservoir characteristics and development plan of the Oguni geothermal field, Kyushu, Japan. Geothermics, 29(2), 151–169.
Yeh, E.C., Sun, T.H., Lin, S.T., Lee, W.C., Lin, W., Wu, Y.M., Wang, T.T., Song, S.R., Lin, W., (2013). Investigation of relationship between in-situ stress and fluid conduits from Chinshui geothermal area, NE Taiwan. AGU Fall Meeting p. H51D–1218.
Yui, T. F., Liu, K. K., &Shieh, Y. N. (1993). Stable isotope systematics of argillite/slate from a deep well in the Chingshui geothermal field, Taiwan. Chemical Geology, 103(1–4), 181–191.
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., &Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 1049–1076.
Zoback, M. D. (2007). Reservoir Geomechanics. In Reservoir Geomechanics.
指導教授 郭力維(Li-Wei Kuo) 審核日期 2023-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明