參考文獻 |
Al-Hashimi, O., Hashim, K., Loffill, E., Marolt Čebašek, T., Nakouti, I., Faisal, A. A. H., & Al-Ansari, N. (2021). A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules, 26(19). doi:10.3390/molecules26195913
Alamry, A. S., van der Meijde, M., Noomen, M., Addink, E. A., van Benthem, R., & de Jong, S. M. (2017). Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils. CATENA, 157, 388-396. doi:https://doi.org/10.1016/j.catena.2017.06.001
Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54-62. doi:10.2118/942054-g
Bai, L., Huo, Z., Zeng, Z., Liu, H., Tan, J., & Wang, T. (2021). Groundwater flow monitoring using time-lapse electrical resistivity and Self Potential data. Journal of Applied Geophysics, 193, 104411. doi:https://doi.org/10.1016/j.jappgeo.2021.104411
Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrol. Earth Syst. Sci., 17(2), 595-609. doi:10.5194/hess-17-595-2013
Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128-2142. doi:10.1002/hyp.7986
Blome, M., Maurer, H. R., & Schmidt, K. (2009). Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 176(3), 740-752. doi:10.1111/j.1365-246X.2008.04006.x
Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., & Hasenauer, S. (2010). Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci., 14(10), 1881-1893. doi:10.5194/hess-14-1881-2010
Brooks, R. H., & Corey, A. T. (1964). Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Transactions of the ASAE, 7(1), 26-0028. doi:https://doi.org/10.13031/2013.40684
Brunet, P., Clément, R., & Bouvier, C. (2010). Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT) – A case study in the Cevennes area, France. Journal of Hydrology, 380(1), 146-153. doi:https://doi.org/10.1016/j.jhydrol.2009.10.032
Buckingham, E. (1907). Studies on the movement of soil moisture.
Campbell, G. S. (1974). A Simple Method For Determing Unsaturated Conductivity From Moisture Retention Data. Soil Science, 117(6), 311-314. Retrieved from https://journals.lww.com/soilsci/Fulltext/1974/06000/A_SIMPLE_METHOD_FOR_DETERMINING_UNSATURATED.1.aspx
Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (Second edition. ed.). New York: Springer.
Cao, W., Sheng, Y., Wu, J., & Peng, E. (2021). Differential response to rainfall of soil moisture infiltration in permafrost and seasonally frozen ground in Kangqiong small basin on the Qinghai-Tibet Plateau. Hydrological Sciences Journal, 66(3), 525-543. doi:10.1080/02626667.2021.1883619
Caputo, M. C., De Carlo, L., Masciale, R., & Masciopinto, C. (2017). Long-term Pumping Test and Ert to Visualize Hydrogeologic Barriers in Heterogeneous and Karstic Coastal Aquifers. Journal of Geology & Geophysics, 6. doi:10.4172/2381-8719.1000304
Carrière, S., Chalikakis, K., Danquigny, C., Clément, R., & Emblanch, C. (2015). Feasibility and Limits of Electrical Resistivity Tomography to Monitor Water Infiltration Through Karst Medium During a Rainy Event. In (Vol. 1, pp. 45-55).
Carrière, S. D., Ruffault, J., Pimont, F., Doussan, C., Simioni, G., Chalikakis, K., . . . Martin-StPaul, N. K. (2020). Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: insights from Electrical Resistivity Tomography. Science of The Total Environment, 698, 134247. doi:https://doi.org/10.1016/j.scitotenv.2019.134247
Celano, G., Palese, A. M., Ciucci, A., Martorella, E., Vignozzi, N., & Xiloyannis, C. (2011). Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma, 163(3), 163-170. doi:https://doi.org/10.1016/j.geoderma.2011.03.012
Chambers, J. E., Meldrum, P. I., Wilkinson, P. B., Ward, W., Jackson, C., Matthews, B., . . . Gunn, D. (2015). Spatial monitoring of groundwater drawdown and rebound associated with quarry dewatering using automated time-lapse electrical resistivity tomography and distribution guided clustering. Engineering Geology, 193, 412-420. doi:https://doi.org/10.1016/j.enggeo.2015.05.015
Chang, P.-Y., Chang, L.-C., Hsu, S.-Y., Tsai, J.-P., & Chen, W.-F. (2017). Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. Journal of Applied Geophysics, 144, 134-143. doi:https://doi.org/10.1016/j.jappgeo.2017.06.014
Chen, K.-H., Hwang, C., Chang, L.-C., & Tanaka, Y. (2021). Infiltration coefficient, percolation rate and depth-dependent specific yields estimated from 1.5 years of absolute gravity observations near a recharge lake in Pingtung, Taiwan. Journal of Hydrology, 603, 127089. doi:https://doi.org/10.1016/j.jhydrol.2021.127089
Clément, R., Descloitres, M., Günther, T., Ribolzi, O., & Legchenko, A. (2009). Influence of shallow infiltration on time-lapse ERT: Experience of advanced interpretation. Comptes Rendus Geoscience, 341(10), 886-898. doi:https://doi.org/10.1016/j.crte.2009.07.005
Clapp, R. B., & Hornberger, G. M. (1978). Empirical equations for some soil hydraulic properties. Water Resources Research, 14(4), 601-604. doi:10.1029/WR014i004p00601
Coscia, I., Linde, N., Greenhalgh, S., Günther, T., & Green, A. (2012). A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics. Journal of Applied Geophysics, 80, 12-24. doi:https://doi.org/10.1016/j.jappgeo.2011.12.015
Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A. P., Romanovsky, V., & Hubbard, S. S. (2017). Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra. Journal of Geophysical Research: Biogeosciences, 122(6), 1321-1342. doi:https://doi.org/10.1002/2016JG003724
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d′eau : Ouvrage terminé par un appendice relatif aux fournitures d′eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitume: Victor Dalmont, éditeur.
de Almeida, W. S., Panachuki, E., de Oliveira, P. T. S., da Silva Menezes, R., Sobrinho, T. A., & de Carvalho, D. F. (2018). Effect of soil tillage and vegetal cover on soil water infiltration. Soil and Tillage Research, 175, 130-138. doi:https://doi.org/10.1016/j.still.2017.07.009
de Lima, O. A. L., & Sri, N. (2000). Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of Hydrology, 235(1), 12-26. doi:https://doi.org/10.1016/S0022-1694(00)00256-0
Descloitres, M., Ribolzi, O., Troquer, Y., & Thiébaux, J. (2008). Study of water tension differences in heterogeneous sandy soils using surface ERT. Journal of Applied Geophysics - J APPL GEOPHYS, 64, 83-98. doi:10.1016/j.jappgeo.2007.12.007
Descloitres, M., Ruiz, L., Sekhar, M., Legchenko, A., Braun, J.-J., Mohan Kumar, M. S., & Subramanian, S. (2008). Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding. Hydrological Processes, 22(3), 384-394. doi:https://doi.org/10.1002/hyp.6608
Dey, A., & Morrison, H. F. (1979). Resistivity Modelling For Arbitrarily Shaped Two-Dimensional Structures. Geophysical Prospecting, 27(1), 106-136. doi:https://doi.org/10.1111/j.1365-2478.1979.tb00961.x
Dietrich, S., Carrera, J., Weinzettel, P., & Sierra, L. (2018). Estimation of Specific Yield and its Variability by Electrical Resistivity Tomography. Water Resources Research, 54(11), 8653-8673. doi:10.1029/2018wr022938
Dingman, S. L. (2015). Physical hydrology (3rd ed. ed.). Long Grove, Illinois: Waveland Press, Inc.
Doherty, J. (2015). Calibration and Uncertainty Analysis for Complex Environmental Models. Brisbane, Australia: Watermark Numerical Computing.
Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed. ed.). New York: Wiley.
Fan, J., Scheuermann, A., Guyot, A., Baumgartl, T., & Lockington, D. A. (2015). Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. Journal of Hydrology, 523, 475-488. doi:10.1016/j.jhydrol.2015.01.064
Fowler, D. E., & Moysey, S. M. J. (2011). Estimation of aquifer transport parameters from resistivity monitoring data within a coupled inversion framework. Journal of Hydrology, 409(1), 545-554. doi:https://doi.org/10.1016/j.jhydrol.2011.08.063
Friedel, S. (2003). Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophysical Journal International - GEOPHYS J INT, 153, 305-316. doi:10.1046/j.1365-246X.2003.01890.x
Friedel, S., Thielen, A., & Springman, S. M. (2006). Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Applied Geophysics, 60(2), 100-114. doi:10.1016/j.jappgeo.2006.01.001
Fullhart, A. T., Kelleners, T. J., Chandler, D. G., McNamara, J. P., & Seyfried, M. S. (2019). Bulk density optimization to determine subsurface hydraulic properties in Rocky Mountain catchments using the GEOtop model. Hydrological Processes, 33(17), 2323-2336. doi:https://doi.org/10.1002/hyp.13471
Günther, T., Rücker, C., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion. Geophysical Journal International, 166(2), 506-517. doi:10.1111/j.1365-246X.2006.03011.x
Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H. (2011). Three-Dimensional Electrical Resistivity Tomography to Monitor Root Zone Water Dynamics. Vadose Zone Journal, 10(1), 412-424. doi:10.2136/vzj2010.0079
Glover, P., Hole, M., & Pous, J. (2000). A modifed Archie′s law for two conducting phases. Earth and Planetary Science Letters - EARTH PLANET SCI LETT, 180, 369-383. doi:10.1016/S0012-821X(00)00168-0
Glover, P. W. J. (2016). Archie′s law – a reappraisal. Solid Earth, 7(4), 1157-1169. doi:10.5194/se-7-1157-2016
Glover, P. W. J. (2017). A new theoretical interpretation of Archie′s saturation exponent. Solid Earth, 8(4), 805-816. doi:10.5194/se-8-805-2017
Hübner, R., Heller, K., Günther, T., & Kleber, A. (2015). Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements. Hydrol. Earth Syst. Sci., 19(1), 225-240. doi:10.5194/hess-19-225-2015
Haaken, K., Furman, A., Weisbrod, N., & Kemna, A. (2016). Time-Lapse Electrical Imaging of Water Infiltration in the Context of Soil Aquifer Treatment. Vadose Zone Journal, 15(11), 12. doi:10.2136/vzj2016.04.0028
Hayashi, M. (2004). Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion. Environmental Monitoring and Assessment, 96(1), 119-128. doi:10.1023/B:EMAS.0000031719.83065.68
Hayley, K., Bentley, L. R., Gharibi, M., & Nightingale, M. (2007). Low temperature dependence of electrical resistivity: Implications for near surface geophysical monitoring. Geophysical Research Letters, 34(18). doi:https://doi.org/10.1029/2007GL031124
Heber Green, W., & Ampt, G. A. (1911). Studies on Soil Phyics. The Journal of Agricultural Science, 4(1), 1-24. doi:10.1017/S0021859600001441
Hermans, T., Nguyen, F., & Robert, T. (2014). Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems. Energies, 7, 5083-5118. doi:10.3390/en7085083
Hermans, T., Vandenbohede, A., Lebbe, L., & Nguyen, F. (2012). A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography. GEOPHYSICS, 77. doi:10.1190/geo2011-0199.1
Hillel, D. (1982). Introduction to soil physics. New York: Academic Press.
Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J., & Kowalsky, M. B. (2010). Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resources Research, 46(4). doi:https://doi.org/10.1029/2008WR007060
Horton, R. E. (1933). The Rôle of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14(1), 446-460. doi:https://doi.org/10.1029/TR014i001p00446
Horton, R. E. (1939). Analysis of runoff-plat experiments with varying infiltration-capacity. Eos, Transactions American Geophysical Union, 20(4), 693-711. doi:https://doi.org/10.1029/TR020i004p00693
Huisman, J. A., Rings, J., Vrugt, J. A., Sorg, J., & Vereecken, H. (2010). Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. Journal of Hydrology, 380(1), 62-73. doi:https://doi.org/10.1016/j.jhydrol.2009.10.023
J. Rawls, W., L. Brakensiek, D., & Soni, B. (1983). Agricultural Management Effects on Soil Water Processes Part I: Soil Water Retention and Green and Ampt Infiltration Parameters. Transactions of the ASAE, 26(6), 1747-1752. doi:https://doi.org/10.13031/2013.33837
Jafarov, E. E., Harp, D. R., Coon, E. T., Dafflon, B., Tran, A. P., Atchley, A. L., . . . Wilson, C. J. (2020). Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data. The Cryosphere, 14(1), 77-91. doi:10.5194/tc-14-77-2020
Jodry, C., Palma Lopes, S., Fargier, Y., Sanchez, M., & Côte, P. (2019). 2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study. Journal of Applied Geophysics, 167, 140-151. doi:https://doi.org/10.1016/j.jappgeo.2019.05.008
Johnson, T. C., Versteeg, R. J., Huang, H., & Routh, P. S. (2009). Data-domain correlation approach for joint hydrogeologic inversion of time-lapse hydrogeologic and geophysical data. GEOPHYSICS, 74(6), F127-F140. doi:10.1190/1.3237087
Kearey, P., Brooks, M., & Hill, I. (2001). An introduction to geophysical exploration (3rd ed. / Philip Kearey, Michael Brooks, Ian Hill. ed.). Malden, MA: Blackwell Science.
Kowalsky, M. B., Gasperikova, E., Finsterle, S., Watson, D., Baker, G., & Hubbard, S. S. (2011). Coupled modeling of hydrogeochemical and electrical resistivity data for exploring the impact of recharge on subsurface contamination. Water Resources Research, 47(2). doi:https://doi.org/10.1029/2009WR008947
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., & Wealthall, G. P. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). 341(10-11), 868-885. doi:10.1016/j.crte.2009.07.010
Lapenna, V., & Perrone, A. (2022). Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions. Applied Sciences, 12(3), 1425. Retrieved from https://www.mdpi.com/2076-3417/12/3/1425
Levenberg, K. (1944). A Method for the Solution of Certain Problems in Least Squares. Quarterly of Applied Mathematics, 2(2), 164-168. Retrieved from http://www.jstor.org/stable/43633451
Linde, N., Binley, A., Tryggvason, A., Pedersen, L. B., & Revil, A. (2006). Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data. Water Resources Research, 42(12). doi:https://doi.org/10.1029/2006WR005131
Lu, D., Wang, H., Huang, D., Li, D., & Sun, Y. (2020). Measurement and Estimation of Water Retention Curves Using Electrical Resistivity Data in Porous Media. Journal of Hydrologic Engineering, 25(6), 04020021. doi:doi:10.1061/(ASCE)HE.1943-5584.0001925
Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. Retrieved from http://www.jstor.org/stable/2098941
Memari, S. S., & Clement, T. P. (2021). PySWR- A Python code for fitting soil water retention functions. Computers & Geosciences, 156, 104897. doi:https://doi.org/10.1016/j.cageo.2021.104897
Merz, B., & Bárdossy, A. (1998). Effects of spatial variability on the rainfall runoff process in a small loess catchment. Journal of Hydrology, 212-213, 304-317. doi:https://doi.org/10.1016/S0022-1694(98)00213-3
Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). doi:https://doi.org/10.1029/2002WR001581
Michot, D., Thomas, Z., & Adam, I. (2016). Nonstationarity of the electrical resistivity and soil moisture relationship in a heterogeneous soil system: a case study. SOIL, 2(2), 241-255. doi:10.5194/soil-2-241-2016
Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. GEOPHYSICS, 73(3), G7-G17. doi:10.1190/1.2907156
Morbidelli, R., Corradini, C., Saltalippi, C., Flammini, A., Dari, J., & Govindaraju, R. S. (2018). Rainfall Infiltration Modeling: A Review. Water, 10(12), 1873. Retrieved from https://www.mdpi.com/2073-4441/10/12/1873
Multiphysics, C. O. M. S. O. L. (1998). Introduction to COMSOL multiphysics. COMSOL Multiphysics, Burlington, MA, accessed Feb, 9, 2018.
Nasta, P., Boaga, J., Deiana, R., Cassiani, G., & Romano, N. (2019). Comparing ERT- and scaling-based approaches to parameterize soil hydraulic properties for spatially distributed model applications. Advances in Water Resources, 126, 155-167. doi:10.1016/j.advwatres.2019.02.014
Nielson, T., Bradford, J., Pierce, J., & Seyfried, M. (2021). Soil structure and soil moisture dynamics inferred from time-lapse electrical resistivity tomography. CATENA, 207, 105553. doi:https://doi.org/10.1016/j.catena.2021.105553
Oware, E. K., Moysey, S. M. J., & Khan, T. (2013). Physically based regularization of hydrogeophysical inverse problems for improved imaging of process-driven systems. Water Resources Research, 49(10), 6238-6247. doi:https://doi.org/10.1002/wrcr.20462
Perrens, S. J., & Watson, K. K. (1977). Numerical analysis of two-dimensional infiltration and redistribution. Water Resources Research, 13(4), 781-790. doi:https://doi.org/10.1029/WR013i004p00781
Philip, J. R. (1957). The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83(5), 345-358. Retrieved from https://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx
Pleasants, M. S., Neves, F. d. A., Parsekian, A. D., Befus, K. M., & Kelleners, T. J. (2022). Hydrogeophysical Inversion of Time-Lapse ERT Data to Determine Hillslope Subsurface Hydraulic Properties. Water Resources Research, 58(4), e2021WR031073. doi:https://doi.org/10.1029/2021WR031073
Pruess, K., Oldenburg, C. M., & Moridis, G. J. (1999). TOUGH2 User′s Guide Version 2. Retrieved from United States: https://www.osti.gov/biblio/751729
https://www.osti.gov/servlets/purl/751729
Rücker, C. (2011). Advanced Electrical Resistivity Modelling and Inversion using Unstructured Discretization. (PhD). University of Leipzig, Leipzig, Retrieved from urn:nbn:de:bsz:15-qucosa-69066
Rücker, C., Günther, T., & Spitzer, K. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topography – I. Modelling. Geophysical Journal International, 166(2), 495-505. doi:https://doi.org/10.1111/j.1365-246X.2006.03010.x
Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106-123. doi:https://doi.org/10.1016/j.cageo.2017.07.011
Revil, A., & Glover, P. W. J. (1998). Nature of surface electrical conductivity in natural sands, sandstones, and clays. Geophysical Research Letters, 25(5), 691-694. doi:https://doi.org/10.1029/98GL00296
Richards, L. A. (1931). Capillary Conduction of Liquids Through Porous Mediums. Physics, 1(5), 318-333. doi:10.1063/1.1745010
Schwarz, H., & Bertermann, D. (2020). Mediate relation between electrical and thermal conductivity of soil. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(3), 50. doi:10.1007/s40948-020-00173-x
Simunek, J. J., Saito, H., Sakai, M., & Van Genuchten, M. (2008). The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media.
Smyl, D., Rashetnia, R., Seppänen, A., & Pour-Ghaz, M. (2017). Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cement and Concrete Research, 91, 61-72. doi:https://doi.org/10.1016/j.cemconres.2016.10.009
Sorensen, D. C. (1982). Newton’s Method with a Model Trust Region Modification. SIAM Journal on Numerical Analysis, 19(2), 409-426. doi:10.1137/0719026
Szalai, S., Szokoli, K., Prácser, E., Metwaly, M., Zubair, M., & Szarka, L. (2019). An alternative way in electrical resistivity prospection: the quasi-null arrays. Geophysical Journal International, 220(3), 1463-1480. doi:10.1093/gji/ggz518
Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217-227. doi:https://doi.org/10.1016/j.still.2009.07.007
Tong, B., Gao, Z., Horton, R., Li, Y., & Wang, L. (2016). An Empirical Model for Estimating Soil Thermal Conductivity from Soil Water Content and Porosity. Journal of Hydrometeorology, 17(2), 601-613. doi:https://doi.org/10.1175/JHM-D-15-0119.1
Tran, A. P., Dafflon, B., & Hubbard, S. (2016). iMatTOUGH: An open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models. Computers & Geosciences, 89, 132-143. doi:https://doi.org/10.1016/j.cageo.2016.02.006
Tran, A. P., Dafflon, B., & Hubbard, S. (2017). Coupled land surface–subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra. The Cryosphere, 11(5), 2089-2109. doi:10.5194/tc-11-2089-2017
Tran, A. P., Dafflon, B., Hubbard, S., Kowalsky, M. B., Long, P., Tokunaga, T. K., & Williams, K. H. (2016). Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion. Hydrol. Earth Syst. Sci., 20(9), 3477-3491. doi:10.5194/hess-20-3477-2016
Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., & Ponton, J. (2012). Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrological Processes, 26(14), 2106-2119. doi:10.1002/hyp.7983
Tsai, W.-N., Chen, C.-C., Chiang, C.-W., Chen, P.-Y., Kuo, C.-Y., Wang, K.-L., . . . Chen, R.-F. (2021). Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.737271
Uhlemann, S. S., Sorensen, J. P. R., House, A. R., Wilkinson, P. B., Roberts, C., Gooddy, D. C., . . . Chambers, J. E. (2016). Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 52(3), 1607-1625. doi:https://doi.org/10.1002/2015WR017932
van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:https://doi.org/10.2136/sssaj1980.03615995004400050002x
Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., & Hauck, C. (2019). Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219(3), 1866-1875. doi:10.1093/gji/ggz402
Watlet, A., Kaufmann, O., Triantafyllou, A., Poulain, A., Chambers, J. E., Meldrum, P. I., . . . Van Camp, M. (2018). Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring. Hydrol. Earth Syst. Sci., 22(2), 1563-1592. doi:10.5194/hess-22-1563-2018
Waxman, M. H., & Smits, L. J. M. (1968). Electrical Conductivities in Oil-Bearing Shaly Sands. Society of Petroleum Engineers Journal, 8(02), 107-122. doi:10.2118/1863-a
White, J. T. (2018). A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling & Software, 109, 191-201. doi:https://doi.org/10.1016/j.envsoft.2018.06.009
White, J. T., Fienen, M. N., & Doherty, J. E. (2016). A python framework for environmental model uncertainty analysis. Environmental Modelling & Software, 85, 217-228. doi:https://doi.org/10.1016/j.envsoft.2016.08.017
White, J. T., Hunt, R. J., Fienen, M. N., & Doherty, J. E. (2020). Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis (7-C26). Retrieved from Reston, VA: http://pubs.er.usgs.gov/publication/tm7C26
Wu, J., & Nofziger, D. L. (1999). Incorporating Temperature Effects on Pesticide Degradation into a Management Model. Journal of Environmental Quality, 28(1), 92-100. doi:https://doi.org/10.2134/jeq1999.00472425002800010010x
Yeh, G.-T. (1987). FEMWATER: A finite element model of WATER flow through saturated-unsaturated porous media: First revision.
Yeh, G.-T., Jardine, P. M., Burgos, W. D., Fang, Y., Li, M.-H., & Siegel, M. D. (2004). HYDROGEOCHEM 4.0: A coupled model of fluid flow, thermal transport, and hydrogeochemical transport through saturated-unsaturated media – version 4.0. Oak Ridge, TN.: Oak Ridge National Laboratory.
Yeh, G.-T., & Luxmoore, R. J. (1983). Modeling moisture and thermal transport in unsaturated porous media. Journal of Hydrology, 64(1), 299-309. doi:https://doi.org/10.1016/0022-1694(83)90074-4
Zhang, G., Zhang, G.-B., Chen, C.-c., Chang, P.-Y., Wang, T.-P., Yen, H.-Y., . . . Jia, Z.-y. (2016). Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method. Pure and Applied Geophysics, 173(6), 2227-2239. doi:10.1007/s00024-016-1251-x
Zhao, K., Xu, Q., Liu, F., Xiu, D., & Ren, X. (2020). Field monitoring of preferential infiltration in loess using time-lapse electrical resistivity tomography. Journal of Hydrology, 591, 125278. doi:https://doi.org/10.1016/j.jhydrol.2020.125278
Zieher, T., Markart, G., Ottowitz, D., Römer, A., Rutzinger, M., Meißl, G., & Geitner, C. (2016). Water content dynamics at plot scale - comparison of time-lapse electrical resistivity tomography monitoring and pore pressure modelling. Journal of Hydrology, 544, 195-209. doi:10.1016/j.jhydrol.2016.11.019
Zienkiewicz, O. C., Taylor, R. L., & Too, J. M. (1971). Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3(2), 275-290. doi:https://doi.org/10.1002/nme.1620030211
王子賓. (2016). 交互應用各式地球物理探勘方法於土壤及地下水污染場址之研究. (博士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/rfww5p
交通部中央氣象局. (2022). 氣候資料年報: 交通部中央氣象局.
交通部中央氣象局, & 行政院農業委員會. (2023). 農業氣象觀測網監測系統. Retrieved from https://agr.cwb.gov.tw/NAGR/history/station_hour
朱佾蓁, & 陳建志. (2020). 利用地電阻影像法計算水文地質參數 以屏東平原為例. 撰者, 桃園市中壢區.
行政院農業委員會農業試驗所 (Cartographer). (2008). 全台平地詳測土壤圖
行政院農業委員會農業試驗所. (2016). 農業試驗所土壤資料供應查詢平台. Retrieved from https://tssurgo.tari.gov.tw/Tssurgo/Map
何信昌, & 陳勉銘 (Cartographer). (2000). 臺中[地質圖幅及說明書1/50,000]
吳正宗. (2001). 鹽害土壤的診斷與改良. 興大農業(36), 19-23. Retrieved from http://hdl.handle.net/11455/84145
國立中興大學土壤科學系. (1976). 台中縣南投縣土壤調查報告. Retrieved from 台中市南區:
盛丰, 文鼎, 熊祎玮, & 王康. (2021). 基于电阻率层析成像技术的农田土壤优先流原位动态监测. 农业工程学报, 37(8), 117-124. doi:10.11975/j.issn.1002-6819.2021.08.013
經濟部中央地質調查所. (2015). 臺中盆地地下水補注地質敏感區劃定計畫書(G0005). (10404606410). 新北市中和區: 經濟部
經濟部中央地質調查所. (2023). 工程地質探勘資料庫. Retrieved from https://geotech.moeacgs.gov.tw/imoeagis/Home/Map
經濟部水利署. (2022). 水文資訊網萬豐地下水觀測井. Retrieved from https://gweb.wra.gov.tw/HydroInfo/StDataInfo/StDataInfo?GW&061812M2
蔡武男, & 陳建志. (2021). 電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例. (碩士). 國立中央大學, 桃園縣. Retrieved from https://hdl.handle.net/11296/d9299t |