博碩士論文 110327002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.144.109.159
姓名 洪思靖(Si-Jing Hong)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 啟發式貪婪演算法應用於三維裝箱之研究
(Application of Heuristic Greedy Algorithms in Three-Dimensional Bin Packing Problems)
相關論文
★ 氣動馬達之單軸平台定位控制★ 運用MRAC及模糊法則於氣動馬達FPGA控制器之研發
★ 球型變焦鏡頭之研究★ 影像式多目標模擬器製作與平行光顯像系統設計
★ 連續式微電鍍之影像處理方法★ 硬體迴路測試系統建構與驗證
★ 即時影像引導連續式微電鍍之立體微結構製作研究★ 公共環境下人員追蹤影像方法研究
★ 燃料電池氫氣進料控制之研究★ 形狀記憶合金對焦系統之 基因演算法及模糊控制法則
★ 公共空間光源亮度模糊控制法則之研究★ 立方衛星無線通訊系統開發
★ 多重訊號同步擷取裝置整合研究★ 應用希爾伯特黃變換(HHT)之邊際譜分析於旋轉機械的元件鬆脫故障診斷
★ 總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用★ 超音波聚焦噴墨之能量驅動與分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-20以後開放)
摘要(中) 近年來,隨著工業4.0的崛起,數位技術、自動化機械上下料、智慧生產以及物聯網(IoT)的應用等各個方面都經歷了革命性的發展。這些進步不僅在不同產業中帶來了跳躍性的成長,並且有效提高了生產效率並降低了成本。工業4.0的主要目標是將製造資源、數據和流程整合在一起,建立更靈活和智慧的製造產業。在這個過程中,產品裝箱和出貨這一關鍵流程變得至關重要。若能在貨物進行裝箱時有較佳的事前安排,必能使裝載空間達到高效率的使用,如此一來,不僅能節省承載貨物的工具數量(如棧板、貨櫃及貨車等)亦能減少重複嘗試擺放時所費的時間及人力成本。
  本文將影像處理的技術用於辨識箱子尺寸,以便將不同種類的箱子進行自動化歸類。並針對不同尺寸和數量的箱子,運用傳統試誤法、貪婪演算法和深度優先搜尋法進行了裝箱運算。透過比較運算結果的差異,並分析三種算法在實際應用中的優勢和劣勢,最終選擇啟發式貪婪演算法作為後續裝箱限制條件實驗應用的選擇。為能更貼近實務需求,本研究提出將裝箱運算中加入重量限制、底面限制和位置限制的條件設定。實驗將機械零件從產出裝入箱子,再堆放至棧板,最終將棧板和貨物一同裝載至貨櫃中,進行一系列的運算和安排。考慮到不同的安全需求,本實驗分別進行了不同限制條件的單獨和組合運算,而加入的限制條件越多,空間利用效率降低的幅度亦越大。
  本研究利用Python語言撰寫程式,實驗中利用Matplotlib的工具箱mplot3d將完成裝箱運算的結果繪製成可視化立體圖以便觀察,並讓程式在裝箱運算的過程中同時將執行結果寫入CSV檔,運算結束後可於Excel開檔檢視裝箱成果數據。根據本研究所採用之啟發式貪婪演算法與傳統試誤法求解三維裝箱問題之結果相比較,至多節省約16.20%的可利用空間。
摘要(英) In recent years, with the rise of Industry 4.0, there has been a revolutionary development in various aspects such as digital technology, automated machinery for loading and unloading, smart manufacturing, and the application of the Internet of Things (IoT). These advancements have not only led to significant growth in different industries but have also effectively improved production efficiency and reduced costs. The primary goal of Industry 4.0 is to integrate manufacturing resources, data, and processes to establish a more flexible and intelligent manufacturing industry. In this process, the critical process of product packaging and shipping has become crucial. A well-optimized arrangement during the packing of goods can lead to highly efficient utilization of loading space. This not only conserves the quantity of tools for carrying goods, such as pallets, containers, and trucks, but also reduces the time and labor costs associated with repetitive placement attempts.
  This paper applies image processing technology to identify box sizes for the purpose of automated categorization of various types of boxes. It conducts packing computations for boxes of different sizes and quantities using traditional trial-and-error method, greedy algorithm, and depth-first search algorithm. By comparing the differences in computation results and analyzing the strengths and weaknesses of these three methods in practical applications, the heuristic greedy algorithm is ultimately chosen for subsequent experimental applications involving packing constraint conditions. To better align with practical requirements, this study introduces conditions involving weight limits, base area limits, and position constraints in the packing calculation. The experiments involve loading mechanical parts from production into boxes, stacking them onto pallets, and finally loading the pallets and goods into containers. Considering various safety requirements, the experiments are conducted with different individual and combined constraint conditions. The more constraint conditions are added, the more the efficiency of space utilization is reduced.
  In this study, we utilized the Python programming language to write code. During the experiments, we employed the Matplotlib toolbox, specifically mplot3d, to visualize the results of the packing computations in three-dimensional graphs for observation purposes. Additionally, the program simultaneously recorded the execution results into a CSV file during the packing computation process. After the computation concluded, the results can be viewed by opening the CSV file in Excel to examine the packing outcome data. Comparing the results obtained by the heuristic greedy algorithm employed in this study with those obtained by the traditional trial-and-error method for solving the three-dimensional bin packing problem, it was found that the heuristic approach saved up to approximately 16.20% of available space.
關鍵字(中) ★ 裝箱問題
★ 貪婪演算法
★ 限制條件
★ 啟發式演算法
★ 影像處理
關鍵字(英) ★ Packing Problem
★ Greedy Algorithm
★ Constraint Condition
★ Heuristic Algorithm
★ Image Processing
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 文獻回顧 3
1.4 研究架構 6
第二章 基礎理論 7
2.1 影像處理 7
2.1.1 灰階化 7
2.1.2 高斯模糊 7
2.1.3 二值化 8
2.1.4 Canny邊緣檢測 9
2.1.5 膨脹與侵蝕 10
2.2 裝箱問題 11
2.2.1 二維裝箱 12
2.2.2 三維裝箱 13
2.3 演算法 15
2.3.1 啟發式貪婪演算法 16
2.3.2 深度優先搜尋法 17
第三章 研究方法 19
3.1 影像辨識箱子尺寸 19
3.2 演算法分析與比較 24
3.2.1 實作演算法架構 24
3.2.2 執行結果 27
3.3 裝箱架構設計 33
3.4 裝箱限制條件 37
3.4.1 重量限制 37
3.4.2 底面限制 38
3.4.3 位置限制 40
第四章 成果與討論 42
4.1 單一限制條件 45
4.2 多重限制條件 53
4.3 綜合比較 64
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 66
參考文獻 67
參考文獻 [1] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a Large-Scale Traveling-Salesman Problem”, Operations Research, vol. 2, no. 4, pp. 393-410, 1954.
[2] D. S. Johnson, “Fast Algorithms for Bin Packing”, Journal of Computer and System Sciences, vol. 8, issue 3, pp. 272-314, 1974.
[3] S. Martello, D. Vigo, “Exact Solution of the Two-Dimensional Finite Bin Packing Problem”, Management Science, vol. 44, issue 3, pp. 388-399, 1998.
[4] D. Pisinger, “Heuristics for the Container Loading Problem”, European Journal of Operational Research, vol.141, issue 2, pp. 382-392, 2002.
[5] K. Kang, I. Moon, H. Wang, “A Hybrid Genetic Algorithm with a New Packing Strategy for the Three-Dimensional Bin Packing Problem”, Applied Mathematics and Computation, vol. 219, issue 3, pp. 1287-1299, Oct. 2012.
[6] H. Zhao et.al., “Learning Practically Feasible Policies for Online 3D Bin Packing”, Science China Information Sciences, vol. 65, pp. 1-17, 2022.
[7] S. Kirkpatrick et.al., “Optimization by Simulated Annealing”, Science, vol. 220, no. 4598, pp. 671-680, 1983.
[8] M. Dorigo, “Optimization, Learning and Natural Algorithms”, Ph. D. Thesis, Politecnico di Milano, 1992.
[9] F. Glover, ‘‘Future Paths for Integer Programming and Links to Artificial Intelligence’’ Computers & Operations Research, vol. 13, no. 5, pp. 533-549, Jan. 1986.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms (3rd Edition)”, MIT Press, 2009.
[11] J. L. De Castro Silva, N. Y. Soma, and N. Maculan, “A Greedy Search for the Three-Dimensional Bin Packing Problem: The Packing Static Stability Case”, International Transactions in Operational Research, vol. 10, issue 2, pp. 141-153, 2003.
[12] J. Kang, S. Park, “Algorithms for the Variable Sized Bin Packing Problem”, European Journal of Operational Research, vol. 147, issue 2, pp. 365-372, 2003.
[13] R. Tarjan, “Depth-First Search and Linear Graph Algorithms”, SIAM Journal on Computing, vol. 1, no. 2, pp. 146-160, 1972.
[14] G. J. Holzmann, D. A. Peled, and M. Yannakakis, “On Nested Depth First Search”, The Spin Verification System, vol. 32, pp. 81-89, 1996.
[15] A. Lodi, S. Martello, and D. Vigo, “Recent Advances on Two-Dimensional Bin Packing Problems”, Discrete Applied Mathematics, vol. 123, no. 1-3, pp. 379-396, 2002.
[16] M. R. Garey, D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness”, Freeman, 1979.
[17] A. Lodi, S. Martello, and M. Monaci, “Two-Dimensional Packing Problems: A Survey”, European Journal of Operational Research, vol. 141, issue 2, pp.241-252, Sep. 2002.
[18] B. Guo, J. Hu, J. Li, F. Wu, Q. Peng, and Q. Zhang, “Two-Dimensional Irregular Packing Problems: A Review”, Frontiers in Mechanical Engineering, vol. 8, 2022.
[19] H, Kellerer, U. Pferschy, and D. Pisinger, “Knapsack Problems”, Springer, 2004.
[20] ISO 6780:2003, “Flat Pallets for Intercontinental Materials Handling — Principal Dimensions and Tolerances”, 2020,
“https://www.iso.org/standard/30524.html”.
[21] 長榮貨櫃通。收費項目費率表。2023。“https://www.containerlink.com.tw/cl/CLINK_QueryFeeExchange”。
[22] 長榮海運股份有限公司。貨櫃規格明細。
“https://www.evergreen-marine.com/tw/tei1/jsp/TEI1_Containers.jsp#Dry_1”。
指導教授 黃衍任 審核日期 2023-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明