博碩士論文 110327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.119.142.210
姓名 吳健廷(Chien-Ting Wu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種具有可調變布拉格光柵結構的脊型矽波導反射元件之性能探討
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-15以後開放)
摘要(中) 本研究主要模擬具有布拉格光柵結構的脊型矽波導,其特徵為能反射一特定波段,而其他波段的光則正常通過波導。該元件常作為光通訊波長分波多工系統的通道訊號擷取元件。為提升此種窄波段的矽波導反射元件之頻譜旁瓣的抑制比性能,本研究考慮使用幾種特定的漸變函數來調控布拉格光柵的結構變化,以達到降低反射頻譜旁瓣的抑制比的目的,並探討不同函數對於穿透殘留量、反射率以及頻譜波形等影響。
研究中使用 GratingMOD 軟體來模擬分析布拉格光柵波導,該軟體的數值模擬方法為模態耦合理論(CMT)。透過文獻中一般型波導與脊型波導的模擬比較結果,得知脊型波導加上布拉格光柵結構後,有相對較窄的頻寬,較容易達到頻譜半高寬之頻寬 0.8 nm的設計目標。因此本研究以脊型布拉格光柵波導為主要方向,並探討光柵結構位於波導側邊與波導頂層的差異,模擬結果中我們得知在相同結構長度與相近頻寬下,側邊型光柵結構損耗較大,但元件體積小;頂層型光柵結構損耗較小,但元件體積大。
透過側邊光柵類型之脊型布拉格光柵波導的參數分析,了解各個結構參數對頻寬與反射率的影響,並將下層矽波導寬度作為主要變動參數,與頻寬進行曲線擬合,從擬合函數中選出符合設計目標的參數組合。
使用漢明函數、修正型漢明函數、升餘弦函數、布雷克曼函數、陳函數以及高斯函數來調變布拉格光柵。將各函數的套用至側邊光柵結構,依照函數圖形的半高寬進行分組探討,最後再比較側邊型與頂層型光柵結構在相近穿透殘留量下的函數性能。在結構長度 3000 m 下,修正型漢明函數的雜訊抑制達-24.9dB、反射率 99.9%為各函數中最高,且頻譜波形最銳利;而陳函數的雜訊抑制程度最高,可抑制雜訊至-95dB,其反射率為 95.2%。雜訊抑制程度越高,損耗就相對越高,然而高斯函數在相近的雜訊抑制程度下,損耗大於其他函數。側邊型與頂層型光柵結構在相近穿透殘留量下,兩結構的函數性能皆相近。
摘要(英) This study mainly simulates a ridge silicon waveguide with Bragg grating structure, which is characterized by reflecting a specific band, while wavelength in other bands passes through the waveguide normally. This component is often used as a signal acquisition component in WDM or DWDM systems, and the modulated Bragg grating structure through a apodization function to reduce the sidelobes. We use several apodization functions to investigate the sidelobe suppression, spectrum waveform, transmission, and reflection of each function.
We use GratingMOD to simulate and analyze Bragg grating waveguides. The numerical simulation method of this software is Coupled-Mode Theory (CMT). According to simulation results of strip waveguide and ridge waveguide in the literature, it is known that the ridge waveguide with the Bragg grating has a relatively narrow bandwidth, and it is easier to achieve the design of a bandwidth FWHM is 0.8 nm. Therefore, this study takes the ridge waveguide with the Bragg grating as the main structure, and explores the difference between the grating structure located on the side of the waveguide and the top layer of the waveguide. From the simulation results, we know that under the same structure length and similar bandwidth, the sidewall grating structure has higher loss, but the component volume is smaller; the top grating structure has less loss, but the component volume is larger.
Through the parameter analysis of the sidewall Bragg grating in ridge waveguide, we can understand the influence of each parameter on the bandwidth and reflection, and use the width of the slab as the main parameter to perform curve fitting with the bandwidth.
We use Hamming function, modify-Hamming function, raised-cosine function, Blackman function, Chen function, and Gaussian function to modulate the Bragg gratings. Apply each function to the side grating structure, group and discuss according to the FWHM of the function, and compare the function performance of sidewall and top grating structures under the similar transmission. When the length is 3000m, the modify-Hamming function has a sidelobe suppression of -24.9dB, and reflection is 99.9%, which is the highest among all functions, and the spectrum waveform is the sharpest; while the Chen function has the highest degree of sidelobe suppression of -95dB, and reflection is 95.2%. The higher the degree of sidelobe suppression, the higher the loss. However, the Gaussian function has higher loss than other functions at similar sidelobe suppression. When the sidewall and top grating structures have similar transmission, the function performances of two structures is also similar.
關鍵字(中) ★ 矽光子
★ 布拉格光柵
★ 漸變函數
★ 雜訊抑制
關鍵字(英) ★ SOI
★ Bragg grating
★ apodization function
★ sidelobe suppression
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VII
圖目錄 IX
第一章、緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 基於矽光子的布拉格光柵波導反射元件 2
1-2-2 漸變結構 3
1-3 研究動機 6
1-4 論文架構 7
第二章、研究方法 8
2-1 理論關係式 8
2-1-1 布拉格波長關係式[11] 8
2-1-2 模態耦合理論(Coupled-Mode Theory,CMT)[12] 9
2-2 布拉格光柵波導 9
2-3 漸變函數 12
第三章、布拉格光柵波導模擬比較 16
3-1 一般型與脊型布拉格光柵波導 16
3-2 側邊光柵類型與頂層光柵類型之脊型布拉格光柵波導 20
第四章、側邊光柵類型之脊型布拉格光柵波導參數分析 24
4-1 參數定義 24
4-2 參數分析 25
4-2-1 矽波導寬度W1、W2 25
4-2-2 結構長度L 27
4-2-3 光柵寬度D 30
4-3 曲線擬合 32
第五章、各漸變函數模擬與探討 37
5-1 側邊光柵類型結構之函數性能探討 37
5-1-1 各函數初步探討 37
5-1-2 各函數結構長度最佳化 47
5-2 側邊與頂層光柵類型結構之函數性能探討 53
第六章、結論與未來展望 57
6-1 結論 57
6-2 未來展望 58
參考文獻 59
參考文獻 [1] 林銘偉,矽晶・電子:科技創新—矽光子積體電路,國家實驗研究院國家晶片系統設計中心,2018。檢自:
https://scitechvista.nat.gov.tw/Article/c000003/detail?ID=3ab13c01-79a2-46d3-a636-dbac52b4f940.
[2] CWDM和DWDM淺析。檢自:https://www.jfopt.cn/datacenter/P14.html.
[3] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski. Uniform and sampled Bragg gratings in SOI strip waveguides with sidewall corrugations. IEEE Photon. Technol. Lett., vol. 23, pp. 290-292, 2011.
[4] S. Khan and S. Fathpour. Complementary apodized grating waveguides for tunable optical delay lines. Opt. Express, vol. 20, pp. 19859-19867, 2012.
[5] 許晉瑋,應用於三維感測的垂直共振腔面射型雷射陣列,科儀新知,第219期,15~24頁,2019。
[6] D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona. Apodized surface-corrugated gratings with varying duty cycles. IEEE Photon. Technol. Lett., vol. 12, pp. 639–641, 2000.
[7] I. Giuntoni, D. Stolarek, A. Gajda, G. Winzer, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann. Integrated drop-filter for dispersion compensation based on SOI rib waveguides. Optical Fiber Communication Conference, Optica Publishing Group, IEEE, paper OThJ5, pp. 1-3, 2010.
[8] J. T. Hastings, Michael H. Lim, J. G. Goodberlet, and Henry I. Smith. Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography. J. Vac. Sci. Technol. B 20, pp. 2753–2757, 2002.
[9] K. Ennser, N. Zervas, and R. L. Laming. Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE Journal of Quantum Electronics, vol. 34, pp. 770-778, 1998.
[10] 施秉豪,次波長光柵元件在矽光子的應用,國立中山大學光電工程學系碩士論文,2016。
[11] 張國鎮,光纖光柵感測器之類神經網路結構控制結構(II),國家地震工程研究中心技術報告,2003。
[12] G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang. Slab-modulated sidewall Bragg gratings in silicon-on-insulator ridge waveguides. IEEE Photon. Technol. Lett., vol. 23, pp. 6–9, 2011.
[13] T. Erdogan. Fiber grating spectra. Journal of Lightwave Technology, vol. 15, pp. 1277-1294, 1997.
[14] X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. Opt. Express, vol. 20, pp. 15547–15558, 2012.
[15] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger, and L. Chrostowski. Silicon-on-insulator Bragg gratings fabricated by deep UV lithography. 2010 Asia Communications and Photonics Conference and Exhibition, IEEE, pp. 501-502, 2010.
[16] T. E. Murphy, J. T. Hastings, and H. I. Smith. Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides. Journal of Lightwave Technology, vol. 19, pp. 1938-1942, 2001.
[17] W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski. Coupler-apodized Bragg-grating add–drop filter. Opt. Lett., vol. 38, pp. 3068-3070, 2013.
[18] P. Correc. Coupling coefficients for trapezoidal gratings. IEEE Journal of Quantum Electronics, vol. 24, pp. 8-10, 1988.
[19] 古昀生,寬頻光方向耦合器使用數值權重函數之結構最佳化設計,國立中央大學機械工程研究所博士論文,2009。
[20] C.F. Chen. New Weighting Function Designed for Low crosstalk, Small length mismatched optical coupler. Jpn. J. Appl. Phys., vol. 49, 032501, 2010.
[21] C.F. Chen. Low-crosstalk, short-length mismatched optical coupler designed by new weighting function. Asia Communications and Photonics conference and Exhibition (ACP), IEEE, pp. 1-8, 2009.
[22] X. Wang. Silicon photonic waveguide Bragg gratings. University of British Columbia, 2013.
[23] A. D. Simard and S. LaRochelle. Complex apodized Bragg grating filters without circulators in silicon-on-insulator. Opt. Express, vol. 23, pp. 16662-16675, 2015.
[24] P. M. Waugh. First order Bragg grating filters in silicon on insulator waveguides. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II, SPIE, vol. 7056, pp. 418-429, 2008.
[25] V. Chandra and R. Ranjan. Analysis of propagation loss in silicon-on-insulator based photonic rib waveguide with small cross section. URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE, pp. 1-3, 2019.
[26] R. Cheng and L. Chrostowski. Spectral design of silicon integrated Bragg gratings: a tutorial. Journal of Lightwave Technology, vol. 39, pp. 712-729, 2021.
[27] Z. Zou, L. Zhou, M. Wang, K. Wu, and J. Chen. Tunable spiral Bragg gratings in 60-nm-thick silicon-on-insulator strip waveguides. Opt. Express, vol. 24, pp. 12831-12839, 2016.
[28] Z. Chen, J. Flueckiger, X. Wang, H. Yun, Y. Wang, Z. Lu, F. Zhang, N. A. F. Jaeger, and L. Chrostowski. Bragg grating spiral strip waveguide filters for TM modes. Conference on Lasers and Electro-Optics (CLEO), IEEE, pp. 1-2, 2015.
[29] D. T. H. Tan, K. Ikeda, and Y. Fainman. Cladding-modulated Bragg gratings in silicon waveguides. Opt. Lett., vol. 34, pp. 1357-1359, 2009.
[30] P. Dong, W. Qian, S. Liao, H. Liang, C. C. Kung, N. N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari. Low loss shallow-ridge silicon waveguides. Opt. Express, vol. 18, pp.14474-14479, 2010.
[31] H. Huang, K. Liu, B. Qi, and V. J. Sorger. Re-analysis of single-mode conditions for silicon rib waveguides at 1550 nm wavelength. Journal of Lightwave Technology, vol. 34, pp. 3811-3817, 2016.
[32] S. P. Chan, V. M. N. Passaro, S. T. Lim, C. E. Png, W. Headley, G. Masanovic, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans. Characterization of integrated Bragg gratings on silicon-on-insulator rib waveguides. Semiconductor Optoelectronic Devices for Lightwave Communication, SPIE, vol. 5248, pp. 273-283, 2003.
[33] V. Muniswamy, P. K. Pattnaik, and N. Krishnaswamy. Modeling and analysis of SOI gratings-based opto-fluidic biosensor for lab-on-a-chip applications. Photonics, MDPI, vol. 6, pp. 71, 2019.
[34] N. L. Kazanskiy, S. N. Khonina, and M. A. Butt. A review of photonic sensors based on ring resonator structures: three widely used platforms and implications of sensing applications. Micromachines, MDPI, vol. 14, pp. 1080, 2023.
[35] S. Schoenhardt, A. Boes, T. G. Nguyen, and A. Mitchell. Ridge waveguide couplers with leaky mode resonator-like wavelength responses. Opt. Express, vol. 31, pp. 626-634, 2023.
[36] S. L. Tsao, J. H. Tien, and C. W. Tsai. Simulations on an SOI grating-based optical add/drop multiplexer. IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 1277-1284, 2002.
[37] A. J. Shaikh, A. G. Abro, M. M. A. Baig, M. M. A. Siddiqui, and S. M. Abbas. Confinement specific design of SOI rib waveguides with submicron dimensions and single-mode operation. Eng. Proc., vol.20, pp. 19, 2022.
[38] Y. E. Marin, A. Bera, M. Cherchi, and T. Aalto. Ultra-high-Q racetrack on thick SOI platform through hydrogen annealing. European Conference on Optical Communication (ECOC), IEEE, pp. 1-4, 2022.
[39] Y. E. Marin, A. Bera, M. Cherchi and T. Aalto. Ultra-high-Q racetrack resonators on thick SOI platform through hydrogen annealing smoothing. Journal of Lightwave Technology, vol. 41, pp. 3642-3648, 2023.
[40] Y. Wang, S. Bhat, N. Tessema, R. Kraemer, A. Napoli, G. Delrosso, and N. Calabretta. Ultrawide-band low polarization sensitivity 3-µm SOI arrayed waveguide gratings. Journal of Lightwave Technology, vol. 40, pp. 3432-3441, 2022.
[41] R. Huang, Y. Zhao, X. She, H. Liao, J. Zhu, Z. Zhu, X. Liu, H. Liu, Z. Sheng, and F. Gan. High resolution, high channel count silicon arrayed waveguide grating router on-chip. Opt. Express, vol. 31, pp. 14308-14316, 2023.
[42] A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. LaRochelle. Characterization and reduction of spectral distortions in silicon-on-Insulator integrated Bragg gratings. Opt. Express, vol. 21, pp. 23145-23159, 2013.
[43] J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. Van Thourhout. Planar concave grating demultiplexer with high reflective Bragg reflector facets. IEEE Photon. Technol. Lett., vol. 20, pp. 309-311, 2008.
指導教授 陳奇夆(Chi-Feng Chen) 審核日期 2024-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明