博碩士論文 109226080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.147.75.46
姓名 黃振岡(Chen-Kang Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高分子發光二極體電子注入層結構與發光層厚度對元件光電特性影響之研究
(Study on the influence of electron injection layer structures and emitter layer thickness on electro-optical characteristics of the polymer light emitting diodes)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-24以後開放)
摘要(中) 本論文旨在研究高分子發光二極體的電性與光學特性,在高分子發光二極體中,隨著不同注入結構與各層模之間不同厚度的搭配,通常會影響發光效率與光譜,因此,本研究使用PPV 衍生物Super Yellow (SY) 作為發光層、ZnO:PEI作為電子注入層並改變兩者的實驗參數與厚度,觀察高分子發光二極體的外部量子效率,最終以ZnO:PEI為1:0.33、SY 為75 nm製作出發光效率為4.14 %的PLED,並藉由電性與光學分析探討影響元件效率高低的原因。
由實驗結果表明,SY PLED 中電洞傳輸效率高於電子傳輸效率,在電子注入層ZnO:PEI 摻入適當比例PEI於ZnO有助於降低電子注入能障至0.1 eV,同時可阻擋電洞並增加電洞於ZnO/SY界面處的累積,進一步幫助電子注入與電洞在SY復合發光。此外,實驗結果表明,當摻入過多的PEI時會導致薄膜表面的電阻值與粗糙度提升,同時,我們藉由Macleod軟體模擬PLED的內部電場分布並分析之,同時也探討PLED中的光學損耗模態。
摘要(英) This study aims to discuss the electrical and optical properties of organic light-emitting diode (PLED). In general, the layer thicknesses and injection structures of an PLED may influence the emission efficiency and output spectrum. In this study,we use the PPV derivative , Super Yellow, as the emitter layer, and ZnO:PEI as the electron injection layer, and measure the external quantum efficiencies (EQEs) of the PLEDs as a function of electron injection structures and SY layer thicknesses, we fabricate a PLED with external quantum efficiency 4.14% by using ZnO:PEI for 1:0.33 and SY for 75 nm. We then discuss the results of the different EQEs through the electrical and optical analyses.
Our result shows that the hole transport is much more efficient than electron transport in an SY PLED. ZnO:PEI is an nano-composite structure, and an appropriate PEI ratio in the ZnO layer can reduce the electron injection barrier while blocking holes and increasing hole accumulations at the ZnO/SY interface, further facilitating the electron injection and recombination with holes in SY. Furthermore, we use the Macleod optical software to simulate and analyze the electric field distribution within the PLEDs, and also discuss the optical losses modes in the PLED structure, from which the influence of the SY thickness on the emission properties is explained.
關鍵字(中) ★ 有機發光二極體
★ 光電特性
★ 電子注入層
★ 發光層
★ 高分子
★ 電致發光
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
第一章 緒論 1
1-1高分子發光二極體 1
1-2研究動機 5
第二章 基本原理 6
2-1高分子發光二極體 6
2-2載子的傳輸與注入 7
2-2-1跳躍理論 7
2-2-2空間電荷限制電流 8
2-3 載子遷移率 8
2-4 單載子元件 9
2-5 PLED結構內部的光學損耗 10
2-6 PLED結構的光學模態 12
2-7 發光層中偶極矩的排列方向 14
2-8 外部量子效率 15
第三章 實驗方式、步驟與材料介紹 16
3-1 製程儀器介紹 16
3-1-1熱蒸鍍系統 16
3-1-2手套箱 17
3-1-3旋轉塗佈機 18
3-2量測儀器介紹 18
3-2-1光電量測: SPA、Photodiode 19
3-2-2光纖量測系統 20
3-2-3紫外光電子能譜 21
3-2-4紫外/可見/紅外光譜儀 22
3-3實驗步驟與材料 23
3-3-1 PLED元件製程 23
3-3-2 Electron-only元件製程 25
3-3-3 Hole-only元件製程 25
3-3-4 實驗材料 26
第四章 實驗結果 28
4-1 Super Yellow (SY) 發光材料 28
4-2 SY PLED (改變ZnO:PEI電子注入層比例) 30
4-2-1 PLED(改變電子注入層ZnO:PEI) 30
4-2-2 單載子元件 (Electron-only devices) 32
4-2-3 紫外光、X射線光電子能譜與原子力顯微鏡量測 33
4-2-4 ZnO:PEI電子注入層總結 40
4-3 SY PLED (改變SY厚度) 40
4-3-1 PLED(改變SY發光層的厚度) 40
4-3-2單載子元件 42
4-3-3 光學分析 48
第五章 結論與未來展望 53
參考文獻 54
參考文獻 [1] Tang, Ching W., and Steven A. VanSlyke. "Organic electroluminescent diodes." Applied physics letters 51.12 (1987): 913-915.
[2] Burroughes, Jeremy H., et al. "Light-emitting diodes based on conjugated polymers." nature 347.6293 (1990): 539-541.
[3] Tseng, S. R., et al. "Electron transport and electroluminescent efficiency of conjugated polymers." Synthetic Metals 159.1-2 (2009): 137-141.
[4] Gwinner, Michael C., et al. "Solution‐processed zinc oxide as high‐performance air‐stable electron injector in organic ambipolar light‐emitting field‐effect transistors." Advanced Functional Materials 20.20 (2010): 3457-3465.
[5] Qian, L., et al. (2010). "Electroluminescence from light-emitting polymer /ZnO nanoparticle heterojunctions at sub-bandgap voltages." Nano Today 5(5): 384-389.
[6] Salehi, Amin, et al. "Recent advances in OLED optical design." Advanced Functional Materials 29.15 (2019): 1808803.
[7] Jackson, John David. "Classical electrodynamics 3rd ed john wiley & sons." Inc., NewYork, NY (1999).
[8] E. Hecht, Optics, 5th ed., Addison-Wesley, Boston 2016.
[9] Barnes, W. L. "Fluorescence near interfaces: the role of photonic mode density." journal of modern optics 45.4 (1998): 661-699.
[10] Chang, Jui-Fen, et al. "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture." Optics Express 28.26 (2020): 39781-39789.
[11] 蔣記宇, "聚對苯乙烯衍生物之超強耦合光致發光現象與電致發光共振腔元件之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022.
[12] Gambino, Salvatore, et al. "Exploring light–matter interaction phenomena under ultrastrong coupling regime." ACS Photonics 1.10 (2014): 1042-1048.
[13] Matsushima, Toshinori, Yoshiki Kinoshita, and Hideyuki Murata. "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers." Applied Physics Letters 91.25 (2007): 253504.
[14] Hung, L. S., Ching Wan Tang, and Monica Gary Mason. "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode." Applied Physics Letters 70.2 (1997): 152-154.
[15] Lee, Hyunbok, et al. "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces." Applied Physics Letters 93.4 (2008): 279.
[16] 黃裕軒, "有機平板波導元件電激發光特性之研究," 碩士, 光電科學
與工程學系, 國立中央大學, 桃園縣, 2014.
[17] M. Fox, Optical Properties of Solids, 2th ed., Oxford University Press, New York 2010.
[18] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer,
New York 2007.
[19] Salehi, Amin. Manipulating Refractive Index in Organic Light Emitting Diodes and Direct Triplet Exciton Formation by Charge Injection. North Carolina State University, 2019.
[20] Flämmich, Michael, et al. "Oriented phosphorescent emitters boost OLED efficiency." Organic Electronics 12.10 (2011): 1663-1668.
[21] K. Technology. "B1500A 半導體元件參數分析儀/半導體特性分析系統主機." https://www.keysight.com/zh-TW/pd-582565-pn-B1500A/semiconductor-device-analyzer.
[22] 洪舜昱, "即時性多角度光譜儀系統 之校正與應用," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available:
[23] 中央大學精密儀器中心, "Thermo VG-Scientific / Sigma Probe." https://ncu.edu.tw/rd/upload/Super_Instrument/charge/ESCA_0.pdf (accessed.
[24] 益弘儀器股份有限公司, "HITACHI UH4150 UV-VIS-NIR 分光光譜儀."
https://www.ehong.com.tw/product_d.php?lang=tw&tb=1&cid=42&id=141
[25] Y. Zhou et al., "A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics," Science, vol. 336, no. 6079, pp. 327-332, 2012, doi: 10.1126/science.1218829.
[26] S. Gambino, A. K. Bansal, and I. D. W. Samuel, "Photophysical and charge-transporting properties of the copolymer SuperYellow," Organic Electronics, vol. 14, no. 8, pp. 1980-1987, 2013/08/01/ 2013
[27] Ossila materies, "PEDOT:PSS." https://www.ossila.com/products/pedot-pss.
[28] 黃柏翔, "聚對苯乙烯衍生物高效率強耦合有機發光二極體之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2021.
[29] Hassan, M. U., et al. "Highly efficient PLEDs based on poly (9, 9-dioctylfluorene) and Super Yellow blend with Cs2CO3 modified cathode." Applied Materials Today 1.1 (2015): 45-51.
[30] 邱國賢, "超強耦合之有機高分子電激發偏極子元件," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022.
[31] 鄭宥晨, "超強耦合有機複合式垂直發光電晶體," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2022.
[32] Kabra, Dinesh, et al. "Efficient Single‐Layer Polymer Light‐Emitting Diodes." Advanced Materials 22.29 (2010): 3194-3198.
[33] Lu, Li Ping, Chris E. Finlayson, and Richard H. Friend. "A study of tin oxide as an election injection layer in hybrid polymer light-emitting diodes." Semiconductor Science and Technology 29.12 (2014): 125002.
[34] Zhou, Yinhua, et al. "A universal method to produce low–work function electrodes for organic electronics." Science 336.6079 (2012): 327-332.
[35] 林煒紘, "超強耦合高分子發光二極體之研究," 碩士論文, 光電科學與工程學系, 國立中央大學, 桃園縣, 2020.
[36] Shao, Yan, Guillermo C. Bazan, and Alan J. Heeger. "Long‐lifetime polymer light‐emitting electrochemical cells." Advanced materials 19.3 (2007): 365-370.
[37] Chen, Hsiu-Cheng, et al. "Solution-processed zinc oxide /polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells." ACS applied materials & interfaces 7.11 (2015): 6273-6281.
[38] Wu, Yongling Linda, et al. "Surface modification of ZnO nanocrystals." Applied Surface Science 253.12 (2007): 5473-5479.
[39] Höfle, Stefan, et al. "Influence of the emission layer thickness on the optoelectronic properties of solution processed organic light-emitting diodes." Acs Photonics 1.10 (2014): 968-973.
[40] Chang, Hong-Wei, et al. "Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells." Journal of Applied Physics 113.20 (2013): 204502.
[41] Lee, Cholho, and Jang‐Joo Kim. "Enhanced light out‐coupling of OLEDs with low haze by inserting randomly dispersed nanopillar arrays formed by lateral phase separation of polymer blends." Small 9.22 (2013): 3858-3863.
[42] Koh, Tae-Wook, et al. "Enhanced outcoupling in organic light-emitting diodes via a high-index contrast scattering layer." ACS photonics 2.9 (2015): 1366-1372.
[43] Jeon, Sohee, et al. "High‐quality white OLEDs with comparable efficiencies to LEDs." Advanced Optical Materials 6.8 (2018): 1701349.
[44] 陳金鑫,黃孝文 "OLED-夢幻顯示器," ed: 初版, 五南圖書出版社, 2012.
[45] Burns, Samantha, et al. "Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs." Scientific reports 7.1 (2017): 40805.
[46] Zhou, Yinhua, et al. "A universal method to produce low–work function electrodes for organic electronics." Science 336.6079 (2012): 327-332.
[47] Zhang, Xinyuan, et al. "A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells." Journal of colloid and interface science 514 (2018): 328-337.
[48] Sahai, Anshuman, and Navendu Goswami. "Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations." Ceramics International 40.9 (2014): 14569-14578.
指導教授 張瑞芬 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明