博碩士論文 110622015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:18.226.251.38
姓名 孔慶恩(Ching-En Kung)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制
(Thermo-hydro-mechanical-chemical simulations on the evolution of pore-fluid pressure and deformation mechanisms of the fault gouge at seismic slip rate)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-28以後開放)
摘要(中) 地震由斷層滑動並釋放應力所引發,斷層快速滑動時的岩石變形機制受到高溫驅動之物理或化學作用與孔隙水壓所影響。其中,由於孔隙水壓難以量測,過去對地震時孔隙水壓的估計主要有兩種方式:1.設定各種岩石物理的參數,代入耦合方程式,估計滑動時的孔隙水壓變化; 2.進行岩石力學實驗並量測孔隙水壓。本實驗室特製的斷層泥樣品容器,可以於飽和水狀態對斷層泥施加快速滑動的條件,並施加高的正向應力(高達18 MPa)。Nguyen et al. (under review)對飽和水高嶺土進行高速旋剪摩擦試驗,獲得摩擦行為、溫度變化、微觀構造與礦物相變等資訊。本研究目的為建立一熱水力化耦合模擬,提供未來實驗室旋剪實驗之孔隙水壓估計的工具。因此,本研究以阮氏貞之實驗數據,進行耦合,並以量測到的溫度做為制約,對模擬之溫度進行修正,進而獲得可能之孔隙水壓變化。最後模擬結果顯示,滑動帶的溫度不斷增加,孔隙水壓也持續地累積上升。由於孔隙水壓的增加可能降低有效應力,將此模擬結果與摩擦行為連結,暗示造成斷層泥的弱化現象,可能為高溫導致的高液壓所造成,也就是熱增壓作用。本研究的模擬結果,需基於實驗數據(包含力學與溫度)以及樣本的微觀構造分析,才可能獲得可信之熱水力化結果。
摘要(英) Earthquakes are triggered by fault slip and release stress. The deformation mechanism of rocks during rapid fault slip is influenced by thermally driven physical or chemical processes and the associated pore fluid pressure. Estimating pore fluid pressure during earthquakes has been challenging due to its difficulty in measurement. In the past, there have been two main approaches to estimate pore fluid pressure during seismic events: 1. Setting various physical parameters of rocks and incorporating them into coupled equations to estimate pore fluid pressure changes during sliding; 2. Conducts rock friction experiments and measures pore fluid pressure. Recently, our laboratory has developed a sample holder for fault gouge samples, which can apply rapid sliding conditions to fault gouge under water-saturated conditions and high normal stresses (up to 18 MPa). Nguyen et al. (under review) has performed high-velocity rotary shear friction tests on saturated kaolinite to obtain information on friction behavior, temperature changes, microstructures, and mineral phase transformations. The aim of this study is to establish a thermo-hydro-mechanical-chemical coupling simulation tool to estimate pore fluid pressure in future laboratory rotary shear experiments. Therefore, based on Nguyen et al. (under review) experimental data, the simulation is performed, and the simulated temperature is adjusted using the measured temperature as a constraint to obtain possible variations in pore fluid pressure. The simulation results show that the temperature within the principal slip zone keeps increasing, and the pore fluid pressure continues to accumulate. The increase in pore fluid pressure may reduce the effective stress, and when linked to the friction behavior, it implies a fault weakening mechanism in kaolinite samples possibly caused by high temperatures-induced fluid pressures, known as thermal pressurization. The simulation results of this study rely on experimental data (including mechanical data and temperature) and microstructural analysis of the samples to obtain reliable thermo-hydro-mechanical-chemical results.
關鍵字(中) ★ 地震
★ 斷層滑移
★ 摩擦試驗
★ 數值模擬
★ 熱增壓
關鍵字(英) ★ Earthquake
★ fault slip
★ rotary shear
★ simulation
★ thermal pressurization
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
符號說明 ix
一、研究動機與目的 1
二、文獻回顧 5
2.1高速旋剪摩擦試驗 5
2.1.1壓力閥 5
2.2溫度變化 11
2.2.1摩擦熱與熱傳導 11
2.2.2蒸發與脫水作用 13
2.3孔隙水壓 14
2.4數值模擬 15
三、研究方法 16
3.1數值模擬使用工具 16
3.2摩擦面溫度機制設定 17
3.2.1 摩擦升溫推演 17
3.2.2滑動面溫度數值解 19
3.3數值模型建模 21
3.3.1幾何、網格與材料性質 21
3.3.2初始條件 25
3.3.3邊界條件 26
四、研究結果 30
4.1模型測試 30
4.2不排水模擬結果 35
4.3排水試驗模擬結果 42
五、討論 48
5.1溫度比較 48
5.2模擬孔隙水壓 50
5.3岩石變形機制 51
5.4模擬限制 53
六、結論與建議 55
6.1結論 55
6.2未來工作 55
參考文獻 57
附錄A:模型建立與模擬結果產出 61
參考文獻 Andrews, D. J. “A Fault Constitutive Relation Accounting for Thermal Pressurization of Pore Fluid: FLUID PRESSURE DURING FAULTING.” Journal of Geophysical Research: Solid Earth 107, no. B12 (December 2002): ESE 15-1-ESE 15-8. https://doi.org/10.1029/2002JB001942.
Aretusini, S., F. Meneghini, E. Spagnuolo, C. W. Harbord, and G. Di Toro. “Fluid Pressurisation and Earthquake Propagation in the Hikurangi Subduction Zone.” Nature Communications 12, no. 1 (April 30, 2021): 2481. https://doi.org/10.1038/s41467-021-22805-w.
Brandes, Christian, and David C. Tanner. “Fault Mechanics and Earthquakes.” In Understanding Faults, 11–80. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-815985-9.00002-3.
Brantut, N., A. Schubnel, J.-N. Rouzaud, F. Brunet, and T. Shimamoto. “High-Velocity Frictional Properties of a Clay-Bearing Fault Gouge and Implications for Earthquake Mechanics.” Journal of Geophysical Research 113, no. B10 (October 3, 2008): B10401. https://doi.org/10.1029/2007JB005551.
Chen, Jianye, André R. Niemeijer, and Peter A. Fokker. “Vaporization of Fault Water during Seismic Slip: Earthquake-Induced Vaporization.” Journal of Geophysical Research: Solid Earth 122, no. 6 (June 2017): 4237–76. https://doi.org/10.1002/2016JB013824.
Chen, Jianye, André Niemeijer, Lu Yao, and Shengli Ma. “Water Vaporization Promotes Coseismic Fluid Pressurization and Buffers Temperature Rise.” Geophysical Research Letters 44, no. 5 (March 16, 2017): 2177–85. https://doi.org/10.1002/2016GL071932.
Choi, Jin-Hyuck, Paul Edwards, Kyoungtae Ko, and Young-Seog Kim. “Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach.” Earth-Science Reviews 152 (January 2016): 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006.
Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto. “Fault Lubrication during Earthquakes.” Nature 471, no. 7339 (March 2011): 494–98. https://doi.org/10.1038/nature09838.
Faulkner, D. R., C. Sanchez-Roa, C. Boulton, and S. A. M. Den Hartog. “Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature.” Journal of Geophysical Research: Solid Earth 123, no. 1 (January 2018): 226–41. https://doi.org/10.1002/2017JB015130.
Faulkner, D.R., C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and M.O. Withjack. “A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones.” Journal of Structural Geology 32, no. 11 (November 2010): 1557–75. https://doi.org/10.1016/j.jsg.2010.06.009.
Guha-Sapir, Debby, Femke Vos, and Regina Below. “Annual Disaster Statistical Review 201,” n.d.
Hirose, Takehiro. “Growth of Molten Zone as a Mechanism of Slip Weakening of Simulated Faults in Gabbro during Frictional Melting.” Journal of Geophysical Research 110, no. B5 (2005): B05202. https://doi.org/10.1029/2004JB003207.
“Introduction to the Finite Element Method.” In Smart Material Systems and MEMS, 145–85. Chichester, UK: John Wiley & Sons, Ltd, 2006. https://doi.org/10.1002/0470093633.ch7.
Kuo, Li‐Wei, Chien‐Cheng Hung, Haibing Li, Stefano Aretusini, Jianye Chen, Giulio Di Toro, Elena Spagnuolo, et al. “Frictional Properties of the Longmenshan Fault Belt Gouges From WFSD‐3 and Implications for Earthquake Rupture Propagation.” Journal of Geophysical Research: Solid Earth 127, no. 5 (May 2022). https://doi.org/10.1029/2022JB024081.
Kuo, Li-Wei, Sheng-Rong Song, En-Chao Yeh, and Huei-Fen Chen. “Clay Mineral Anomalies in the Fault Zone of the Chelungpu Fault, Taiwan, and Their Implications.” Geophysical Research Letters 36, no. 18 (September 24, 2009): L18306. https://doi.org/10.1029/2009GL039269.
Kuo, Li-Wei, Wen-Jie Wu, Chia-Wei Kuo, Steven A.F. Smith, Wei-Ting Lin, Wei-Hsin Wu, and Yi-Hung Huang. “Frictional Strength and Fluidization of Water-Saturated Kaolinite Gouges at Seismic Slip Velocities.” Journal of Structural Geology 150 (September 2021): 104419. https://doi.org/10.1016/j.jsg.2021.104419.
Lachenbruch, Arthur H. “Frictional Heating, Fluid Pressure, and the Resistance to Fault Motion.” Journal of Geophysical Research: Solid Earth 85, no. B11 (November 10, 1980): 6097–6112. https://doi.org/10.1029/JB085iB11p06097.
Li, Yuan, Philip M Jardine, William D Burgos, Yilin Fang, Ming-Hsu Li, Malcolm D Siegel, and P O Box. “HYDROGEOCHEM 4.0: A Coupled Model of Fluid Flow, Thermal Transport, and HYDROGEOCHEMical Transport through Saturated-Unsaturated Media: Version 4.0,” n.d.
Ma, Kuo-Fong, Hidemi Tanaka, Sheng-Rong Song, Chien-Ying Wang, Jih-Hao Hung, Yi-Ben Tsai, Jim Mori, et al. “Slip Zone and Energetics of a Large Earthquake from the Taiwan Chelungpu-Fault Drilling Project.” Nature 444, no. 7118 (November 2006): 473–76. https://doi.org/10.1038/nature05253.
Niemeijer, André, Giulio Di Toro, W. Ashley Griffith, Andrea Bistacchi, Steven A.F. Smith, and Stefan Nielsen. “Inferring Earthquake Physics and Chemistry Using an Integrated Field and Laboratory Approach.” Journal of Structural Geology 39 (June 2012): 2–36. https://doi.org/10.1016/j.jsg.2012.02.018.
Niemeijer, André, Åke Fagereng, Matt Ikari, Stefan Nielsen, and Ernst Willingshofer. “Faulting in the Laboratory.” In Understanding Faults, 167–220. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-815985-9.00005-9.
Noda, H., and Shimamoto “Thermal Pressurization and Slip-Weakening Distance of a Fault: An Example of the Hanaore Fault, Southwest Japan.” Bulletin of the Seismological Society of America 95, no. 4 (August 1, 2005): 1224–33. https://doi.org/10.1785/0120040089.
Rice, James R. “Heating and Weakening of Faults during Earthquake Slip: HEATING AND WEAKENING OF FAULTS.” Journal of Geophysical Research: Solid Earth 111, no. B5 (May 2006): n/a-n/a. https://doi.org/10.1029/2005JB004006.
Scholz, Christopher H. “Earthquakes and Friction Laws.” Nature 391, no. 6662 (January 1998): 37–42. https://doi.org/10.1038/34097.
Sonuparlak, Birol, Mehmet Sarikaya, and Ilhan A Aksay. “Spinel Phase Formation During the 98OOC Exothermic Reaction in the Kaolinite-to-Mullite Reaction Series,” 1987.
Spray, John G. “Artificial Generation of Pseudotachylyte Using Friction Welding Apparatus: Simulation of Melting on a Fault Plane.” Journal of Structural Geology 9, no. 1 (January 1987): 49–60. https://doi.org/10.1016/0191-8141(87)90043-5.
Tanner, David C., and Christian Brandes. “Introduction.” In Understanding Faults, 1–10. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-815985-9.00001-1.
Ujiie, Kohtaro, Akito Tsutsumi, and Jun Kameda. “Reproduction of Thermal Pressurization and Fluidization of Clay-Rich Fault Gouges by High-Velocity Friction Experiments and Implications for Seismic Slip in Natural Faults.” Geological Society, London, Special Publications 359, no. 1 (January 2011): 267–85. https://doi.org/10.1144/SP359.15.
指導教授 郭力維 郭家瑋(Li-Wei Kuo) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明