博碩士論文 110226055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.145.16.90
姓名 劉俐瑩(Li-Ying Liu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽波導奈米結構反射式偏振旋轉器
(Reflective Polarization Converter formed by Nanostructured Si Waveguides)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以Folded Šolc Filter為基礎所設計出的偏振旋轉器結構,以在矽波導中蝕刻週期性的左右空氣方孔來達到雙折射的效果,其結果會與左右交替方位角的Folded Šolc Filter相似。我們使用了有限時域差分法、光束傳播法及三維特徵模態展開法等方法,成功模擬出在極微小的元件長度(約9.21 µm)下達到高偏振旋轉反射率的成果(最高可達到的反射率為93.1%),可操作的波長範圍約為1460.4nm至1619.4nm,涵蓋光通訊所使用的光譜範圍從S-band(1460-1530nm)、C-band(1530-1565nm)到L-band(1565-1625nm),並透過計算其能帶結構來確認波導反射頻譜中的波峰是由光子能隙所造成的。期望本元件可應用於量子光學電腦中的邏輯計算中。
摘要(英) In this thesis, we designed a polarization rotator based on the Folded Šolc Filter that can possess birefringence by etching periodically-arranged alternatively-shifted air holes in a silicon waveguide. We obtain the reflective polarization rotator with high reflectivity with an extremely small device length (approximately 9.21 µm) using the methods including the finite-difference time-domain method, the beam propagation method, and the three-dimensional eigenmode expansion method. The highest achievable reflectivity was 93.1%, with an operation bandwidth from 1460.4nm to1619.4nm, which covers the S-band (1460-1530 nm), C-band (1530-1565 nm), and L-band (1565-1625 nm) of optical communication spectrum. By calculating the band structure, we confirmed that the peaks in the reflection spectrum were caused by photonic bandgaps. This device could be applied for optical quantum computing.
關鍵字(中) ★ 偏振旋轉器
★ 雙折射光子晶體
★ 矽波導
關鍵字(英) ★ polarization rotator
★ birefringent
★ photonic crystals
★ waveguide
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 序論 1
1.1 研究動機 1
1.2 研究方法 6
1.3 結論 7
第二章 雙折射多層膜矩陣法 8
2.1 Wave-Transfer Matrix[28] 8
2.2 Scattering Matrix[28] 9
2.3 Propagation Matrix in a Homogeneous Medium[28] 10
2.4 座標旋轉矩陣(Coordinate-Transformation Matrix) 10
2.5 矩陣法用於計算Fabry-Pérot結構[28] 12
2.6 4x4矩陣法推導 14
2.7 4x4矩陣法用於單層雙折射晶體之計算 16
2.8 結論 20
第三章 索爾克濾波器 21
3.1 Folded Šolc Filter[47] 21
3.2 Fan Šolc Filter[47] 24
3.3 使用4x4矩陣法計算Šolc Filter 26
3.4 結論 34
第四章 結構設計與模擬分析 35
4.1 結構設計 35
4.2 反射頻譜分析 36
4.2.1 Duty-cycle (DC) 37
4.2.2 總洞數N 39
4.2.3 矩形空氣孔洞的深度Hh與寬度Wh 40
4.3 4x4矩陣法驗證 43
4.4 結論 48
第五章 總結與未來展望 49
5.1 總結 49
5.2 未來展望 49
參考文獻 51
附錄 55
參考文獻 [1] S. Wiesner, "Conjugate coding," ACM Sigact News, vol. 15, no. 1, pp.
78-88, 1983.
[2] N. J. Cerf, C. Adami, and P. G. Kwiat, "Optical simulation of quantum
logic," Physical Review A, vol. 57, no. 3, p. R1477, 1998.
[3] K. Wang et al., "Quantum metasurface for multiphoton interference and
state reconstruction," Science, vol. 361, no. 640 7, pp. 1104-1108, 2018.
[4] X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, "Integrated
polarization rotator/converter by stimulated Raman adiabatic passage,"
Optics Express, vol. 21, no. 14, pp. 17097 -17107, 2013.
[5] S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, "Single-trench
waveguide TE-TM mode converter," Optics Express, vol. 17, no. 14, pp.
11267-11273, 2009.
[6] D. Leung, B. Rahman, and K. Grattan, "Numerical analysis of
asymmetric silicon nanowire waveguide as compact polarization
rotator," IEEE Photonics Journal, vol. 3, no. 3, pp. 381-389, 2011.
[7] Y. Wakabayashi, T. Hashimoto, J. Yamauchi, and H. Nakano, "Short
waveguide polarization converter operating over a wide wavelength
range," Journal of Lightwave Technology, vol. 31, no. 10, pp. 1544 -
1550, 2013.
[8] Y. Shani et al., "Polarization rotation in asymmetric periodic loaded rib
waveguides," Applied Physics Letters, vol. 59, no. 11, pp. 1278 -1280,
1991.
[9] Z. Wang and D. Dai, "Ultrasmall Si-nanowire-based polarization
rotator," JOSA B, vol. 25, no. 5, pp. 747-753, 2008.
[10] C.-C. Chen, "Design of ultra -short polarization convertor with
enhanced birefringence by photonic crystals," Results in Physics, vol.
24, p. 104138, 2021.
[11] 詹凱 畯, "矽波 導 平 移式 光 子晶 體 偏振 旋轉 共 振腔 研 究 ", 國立 中 央大
學光 電 科學 與 工程 學系 碩 士論 文 , 2021.
[12] J. Van der Tol et al., "Realization of a short integrated optic passive
polarization converter," IEEE Photonics Technology Letters, vol. 7, no.
8, pp. 893-895, 1995.
[13] S. Obayya, B. Rahman, and H. El-Mikati, "Vector beam propagation
analysis of polarization conversion in periodically loaded waveguides,"
IEEE Photonics Technology Letters, vol. 12, no. 10, pp. 1346 -1348,
2000.
52
[14] C. Brooks, P. E. Jessop, H. Deng, D. O. Yevick, and G. Tarr, "Passive
silicon-on-insulator polarization-rotating waveguides," Optical
Engineering, vol. 45, no. 4, pp. 044603 -044603-5, 2006.
[15] G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, "Ultra -short siliconon-insulator (SOI) polarization rotator between a slot and a strip
waveguide based on a nonlinear raised cosine flat-tip taper," Optics
Express, vol. 21, no. 12, pp. 14888-14894, 2013.
[16] H. Zhou, C. Li, A. L. Eujin, L. Jia, M. Yu, and G. Lo, "Ultra -compact
and broadband Si photonics polarization rotator by self-alignment
process," Optics Express, vol. 23, no. 5, pp. 681 5-6821, 2015.
[17] K. Okamoto, Fundamentals of Optical Waveguides. Elsevier, 2021.
[18] D. Marcuse, Theory of Dielectric Optical Waveguides. Elsevier, 2013.
[19] S. Keppler, M. Hornung, R. Bödefeld, M. Kahle, J. Hein, and M.
Kaluza, "All-reflective, highly accurate polarization rotator for high -
power short-pulse laser systems," Optics Express, vol. 20, no. 18, pp.
20742-20747, 2012.
[20] R. Soref, "The past, present, and future of silicon photonics," IEEE
Journal of Selected Topics in Quantum Electronics, v ol. 12, no. 6, pp.
1678-1687, 2006.
[21] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni,
"Coupling strategies for silicon photonics integrated chips," Photonics
Research, vol. 7, no. 2, pp. 201-239, 2019.
[22] B. Jalali and S. Fathpour, "Silicon photonics," Journal of Lightwave
Technology, vol. 24, no. 12, pp. 4600 -4615, 2006.
[23] G. T. Reed, "Silicon photonics: the state of the art," 2008.
[24] M. Kira and S. W. Koch, Semiconductor Quantum Optics. Cambridge
University Press, 2011.
[25] J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum
Optics. Courier Corporation, 2006.
[26] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum
Optics. John Wiley & Sons, 2019.
[27] M. O. Scully and M. S. Zubairy, "Quantum optics," ed: American
Association of Physics Teachers, 1999.
[28] B. E. Saleh and M. C. Teich, Fundamentals of Photonics. john Wiley &
sons, 2019.
[29] P. Yeh, "Electromagnetic propagation in birefringent layered media,"
JOSA, vol. 69, no. 5, pp. 742-756, 1979.
53
[30] M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, and A. J.
Ouderkirk, "Giant birefringent optics in multilayer polymer mirrors,"
Science, vol. 287, no. 5462, pp. 2451 -2456, 2000.
[31] M. Piliarik, J. Homola, Z. Manıková, and J. Čtyroký, "Surfac e plasmon
resonance sensor based on a single -mode polarization-maintaining
optical fiber," Sensors and Actuators B: Chemical, vol. 90, no. 1 -3, pp.
236-242, 2003.
[32] K. Busch, G. Von Freymann, S. Linden, S. Mingaleev, L.
Tkeshelashvili, and M. Wegener, "Periodic nanostructures for
photonics," Physics Reports, vol. 444, no. 3 -6, pp. 101-202, 2007.
[33] J. Bai and Y. Yao, "Highly efficient anisotropic chiral plasmonic
metamaterials for polarization conversion and detection," ACS Nano,
vol. 15, no. 9, pp. 14263-14274, 2021.
[34] B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of
photonic crystals," JOSA A, vol. 17, no. 6, pp. 1012 -1020, 2000.
[35] M. Mansuripur, "Analysis of multilayer thin ‐film structures containing
magneto‐optic and anisotropic media at oblique incidence using 2× 2
matrices," Journal of Applied Physics, vol. 67, no. 10, pp. 6466 -6475,
1990.
[36] K. Rokushima and J. Yamakita, "Analysis of anisotropic dielectric
gratings," JOSA, vol. 73, no. 7, pp. 901-908, 1983.
[37] P. Velasquez, M. a. del Mar Sánchez -López, I. Moreno, D. Puerto, and
F. Mateos, "Interference birefringent filters fabricated with low cost
commercial polymers," American Journal of Physics, vol. 73, no. 4, pp.
357-361, 2005.
[38] J. W. Evans, "Solc birefringent filter," JOSA, vol. 48, no. 3, pp. 142 -
145, 1958.
[39] S. Meyer, B.-E. Benkelfat, and Q. Zou, "Hybrid liquid crystal
Solc/Fabry-Perot filter for wavelength demultiplexing: optimum design
parameters," in Micro-Opto-Electro-Mechanical Systems, 2000, vol.
4075: SPIE, pp. 49-59.
[40] I. Will and G. Klemz, "Generation of flat-top picosecond pulses by
coherent pulse stacking in a multicrystal birefringent filter," Optics
Express, vol. 16, no. 19, pp. 14922-14937, 2008.
[41] M. Abuleil and I. Abdulhalim, "Narrowband multispectral liquid crystal
tunable filter," Optics Letters, vol. 41, no. 9, pp. 1957 -1960, 2016.
[42] X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, "Electro -optic
Solc-type wavelength filter in periodically poled lithium niobate,"
Optics Letters, vol. 28, no. 21, pp. 2115 -2117, 2003.
54
[43] R. H. Chu and J. J. Zou, "Transverse strain sensing based on optical
fibre Solc filter," Optical Fiber Technology, vol. 16, no. 3, pp. 151 -155,
2010.
[44] Y. Zhao, Z.-R. Zhang, S.-C. Yan, and R.-J. Tong, "High-sensitivity
temperature sensor based on reflective Solc -like filter with cascaded
polarization maintaining fibers," IEEE Transactions on Instrumentation
and Measurement, vol. 70, pp. 1-8, 2021.
[45] E. Ertekin and A. Lakhtakia, "Sculptured thin film Š olc filters for
optical sensing of gas concentration," The European Physical JournalApplied Physics, vol. 5, no. 1, pp. 45 -50, 1999.
[46] A. Altaqui et al., "Mantis shrimp–inspired organic photodetector for
simultaneous hyperspectral and polarimetric imaging," Science
Advances, vol. 7, no. 10, p. eabe3196, 2021.
[47] A. Yariv and P. Yeh, Optical waves in crystals. Wiley New York, 1984.
[48] A. Messaadi et al., "Solc filters in a reflective geometry," Journal of
Optics, vol. 19, no. 4, p. 045703, 2017.
[49] G. Keiser, Optical communications essentials. McGraw -Hill Education,
2003.
[50] P. Yeh, "Transmission spectrum of a Solc filter," Optics
Communications, vol. 29, no. 1, pp. 1 -6, 1979.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明