博碩士論文 110226035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:13.58.151.231
姓名 鄭羽禎(Yu-Chen Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於神經網路之多頻道燈箱光譜生成器
(Spectrum Generator for Multi-Channel Illuminator Based on Neural Network)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本研究開發一款14頻道燈箱的光譜生成器,向光譜生成器輸入光參數數值,可獲取符合輸入設定之光譜。透過基因演算法生成數據集,使用數據集訓練神經網路,評估預測表現良好的模型將作為光譜生成器。期望本研究可以幫助使用者在短時間內獲取特定目標的情境光源。
使用基因演算法生成相關色溫(Correlated Color Temperature, CCT)為3000 K、4000 K與5000 K且照度(Illuminance, Ev)為500 lux的數據集,其中包含CCT、色偏差值(Delta u-v, Duv)、平均演色性指數(General Color Rendering Index, Ra)與晝夜節律刺激值(Circadian Stimulus, CS)等光參數與頻道權重。研究過程中對基因演算法的設計進行多次修正,實驗一與二皆使用CCT作為適應函數,但實驗二只使用10頻道。實驗三將適應函數改為Duv。因實驗三的CCT偏差大,所以實驗四設計適應函數為uv座標。
計算染色體的光參數以及移除不可行解後,將數據集分成訓練集、驗證集與測試集,並對訓練集與驗證集進行過採樣。使用訓練集與驗證集訓練神經網路,透過測試集比較輸入光參數Xparam與預測結果的光參數Y’param的平均誤差,評估神經網路的效能。
研究結果顯示CS會受到藍色與黃色顏色機制(b-y)的影響,縮小Duv範圍後,4000 K的CS範圍會低於3000 K與5000 K的CS。數據集的光譜普遍具有高Ra。使用uv座標作為適應函數時,可以有效減少CCT預測誤差。當輸入數值落在數據集的光參數範圍內時,光譜生成器均可以產生相對應的光譜。但是光譜生成器的穩定性不足,未來仍需改善。
摘要(英) In this study, we develop a spectrum generator for a fourteen-channel illuminator. The aim is to derive a spectrum that corresponds to input optical parameters from the spectrum generator. After generating datasets via genetic algorithm, we use the datasets to train and evaluate a neural network. The model with the best performance will be chosen as the spectrum generator. We hope to assist users with obtaining specific lighting scenarios within a short time.
We apply genetic algorithm for collecting datasets with a fixed illuminance (Ev) at 500 lux and different correlated color temperature (CCT) at 3000, 4000, and 5000 K. The datasets include channel weights and optical parameters, such as CCT, delta u-v (Duv), general color rendering index (Ra) and circadian stimulus (CS). The design of the genetic algorithm has been revised several times during the research. In the first and second experiments, the fitness function is CCT. In contrast with the first experiment, we only use ten channel weights in the second experiment. The fitness function for the third experiment is changed to Duv. Due to the large deviation of the predicted CCT in the third experiment, we change the fitness function to uv coordinates in the fourth experiment.
After calculating optical parameters of chromosomes and remove infeasible data, the datasets are divided into training dataset, validation dataset and test dataset. Subsequently, the training dataset and validation dataset undergo oversampling. We use the training dataset and validation dataset to train neural networks and evaluate the trained neural networks by comparing the average error between the input optical parameters Xparam and the predicted optical parameters Y’param from the test dataset.
The results show that CS distributions are affected by blue versus yellow color mechanism (b-y). After reducing Duv range, the dataset with the CCT of 4000 K displays a CS distribution with lower values than that of 3000 and 5000 K. The spectra of the datasets generally have high Ra. When using uv coordinates as the fitness function, the deviation of the predicted CCT can be effectively decreased. The spectrum generator can successfully predict the channel weights of desired lighting scenario within the range of the datasets. As long as the input optical parameters are in the the range of optical parameters from the datasets, the spectrum generator is capable of producing corresponding spectra. However, the stability of the spectrum generator is not enough and requires improvement in the future.
關鍵字(中) ★ 光譜生成器
★ 多頻道燈箱
★ 神經網路
★ 基因演算法
★ 晝夜節律刺激值
關鍵字(英) ★ Spectrum Generator
★ Multi-Channel Illuminator
★ Neural Network
★ Genetic Algorithm
★ Circadian Stimulus
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xxi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文架構 2
第二章 文獻探討 4
2-1 光譜與常見光參數 4
2-2 照明對生理影響 10
2-2-1 非視覺系統 12
2-2-2 晝夜節律刺激值(Circadian Stimulus, CS) 14
2-3 探討多頻道燈具的光參數特性 18
2-4 基因演算法(Genetic Algorithm, GA) 21
2-5 神經網路(Neural Network, NN) 24
第三章 光譜生成器的方法與步驟 26
3-1 實驗設計 26
3-1-1 數據集生成方法 29
3-1-2 建構及訓練光譜生成器方法 34
3-1-3 實驗一-適應函數為CCT 38
3-1-4 實驗二-適應函數為CCT (10頻道) 39
3-1-5 實驗三-適應函數為Duv 41
3-1-6 實驗四-適應函數為uv座標 42
3-2 實驗設備 44
3-2-1 光譜可調式多頻道燈箱THOUSLITE LEDCube 44
3-2-2 光源照明分析控制軟體Q_LEDNavigator 45
3-2-3 光源控制軟體照度計THOUSLITE FS 46
3-2-4 色彩照度計CL-70F 46
3-3 實驗步驟 47
3-3-1 模擬照明環境配置 47
3-3-2 實驗流程 49
3-3-3 實驗一-適應函數為CCT 51
3-3-4 實驗二-適應函數為CCT (10頻道) 54
3-3-5 實驗三-適應函數為Duv 54
3-3-6 實驗四-適應函數為uv座標 55
第四章 實驗結果與討論 60
4-1 數據集統計分析結果 60
4-1-1 實驗一-適應函數為CCT 61
4-1-2 實驗二-適應函數為CCT (10頻道) 74
4-1-3 實驗三-適應函數為Duv 93
4-1-4 實驗四-適應函數為uv座標 101
4-2 神經網路預測結果 109
4-2-1 實驗一-適應函數為CCT 109
4-2-2 實驗二-適應函數為CCT (10頻道) 111
4-2-3 實驗三-適應函數為Duv 113
4-2-4 實驗四-適應函數為uv座標 117
4-3 光譜生成器生成結果 124
4-4 光譜生成器結果討論 138
第五章 結論與未來展望 146
5-1 結論 146
5-2 未來展望 147
參考文獻 149
參考文獻 [1] T. Janet. The Scot Who Lit The World, The Story of William Murdoch Inventor of Gas Lighting, Gardners Books, 2003.
[2] M. Pollard. The Light Bulb and How It Changed the World, Facts on File, 1995.
[3] Texas Instruments Incorporated Technical Document Report, Semiconductor Single-Crystal Circuit Development, Contract No. AF33(616)-6600, Rept. No ASD-TDR-63-281. 1963.
[4] T. Pulli, T. Donsberg, T. Poikonen, F. Manoocheri, P. Karha, and E. Ikonen, “Advantages of white LED lamps and new detector technology in photometry,” Light: Science & Applications, 4, e332, 2021.
[5] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Japanese Journal of Applied Physics, 32(Part 2, No.1A/B):L8–L11, 1993.
[6] G. C. Brainard et al, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” Journal of Neuroscience, 21:6405–6412, 2001.
[7] K. Thapan, J. Arendt, and D.J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” The Journal of Physiology, 535:261–267, 2001.
[8] D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science, 295(5557):1070–1073, 2002.
[9] P. R. Mills, S. C. Tomkins, and L. J. M. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” Journal of Circadian Rhythms, 5:2, 2007.
[10] R. Shahidi, R. Golmohammadi, M. Babamiri, J. Faradmal, and M. Aliabadi, “Effect of warm/cool white lights on visual perception and mood in warm/cool color environments,” Experimental and Clinical Sciences, 20:1379–1393, 2021.
[11] I. Hirotake et al, “Intellectual productivity under task ambient lighting,” Lighting Research and Technology, 50: 237–252, 2016.
[12] Y. Liu et al., “The impact and model of CS and CCT on alertness,” 2020 17th China International Forum on Solid State Lighting, Shenzhen, China, 2020.
[13] A.K.R. Choudhury. Principles of Colour and Appearance Measurement, Woodhead Publishingm, 2014.
[14] NVC Lighting. What is correlated colour temperature. Source:https://www.nvcuk.com/technical-support/view/what-is-correlated-colour-temperature-%28cct%29-44, accessed on 2023/03/22.
[15] WIKIMEDIA COMMONS. File:PlanckianLocus.png. Source:https://commons.wikimedia.org/wiki/File:PlanckianLocus.png, accessed on 2023/03/22.
[16] Y. Ohno. Fundamentals of Colorimetry and Practical Color Measurements. Source:https://www.lites.asia/files/otherfiles/0000/0413/Session_2_Fundamentals_of_Colorimetry_and_Practical_Color_Measurements.pdf, accessed on 2023/03/22.
[17] WIKIMEDIA COMMONS. File:Planckian-locus.png. Source:https://commons.wikimedia.org/wiki/File:Planckian-locus.png, accessed on 2023/03/22.
[18] Y. Ohno and M. Fein, “Vision experiment on acceptable and preferred white light chromaticity for lighting,” CIE x039:2014, Proceedings of CIE 2014 Lighting Quality and Energy Efficiency, Kuala Lumpur, Malaysia, 2014.
[19] R&C Lighting. What is Color Rendering Index (CRI) and Why is It Important. Source:https://rclite.com/blog/color-rendering-index/, accessed on 2023/03/22.
[20] MECREE. Let’s Explore The Secrets of CRI. Source:https://www.mecreeled.com/lets-explore-secrets-cri/, accessed on 2023/03/22.
[21] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, January 2012.
[22] A. Kruithof, “Tubular luminescence lamps for general illumination,” Philips technical review, 6:65–73, 1941.
[23] WIKIPEDIA. Kruithof curve. Source:https://en.wikipedia.org/wiki/Kruithof_curve, accessed on 2023/05/25.
[24] W. J. M. van Bommel and G. J. van den Beld, “Lighting for work: a review of visual and biological effects,” Lighting Research and Technology, 36(4):255–266, 2004.
[25] W. J. M. van Bommel, “Non-visual biological effect of lighting and the practical meaning for lighting for work,” Applied Ergonomics, 37(4):461–466, 2006.
[26] F. D. Ganz, “Sleep and immune function,” Critical Care Nurse, 32(2):e19–e25, 2012.
[27] LumosTech. Science behind adjusting your circadian rhythm with light. Source:https://lumos.tech/science-behind-adjusting-circadian-rhythm/, accessed on 2023/03/19.
[28] C. Lok, “Vision science: Seeing without seeing,” Nature, 469:284–285, 2011.
[29] M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman, “A model of phototransduction by the human circadian system,” Brain Research Reviews, 50(2):213–228, 2005.
[30] M. S. Rea and M. G. Figueiro, “Light as a circadian stimulus for architectural lighting,” Lighting Research and Technology, 0:1–14, 2016.
[31] H. J. Tian, T. Chen, Y. Hu, T. Guan, and M. P. Cai, “Change of circadian effect with colour temperature and eye spectral transmittance at different ages,” Lighting Research & Technology, 53:41–53, 2021.
[32] T. Esposito and K. Houser, “Correlated color temperature is not a suitable proxy for the biological potency of light,” Scientific Reports, 12(20223), 2022.
[33] International Commission on Illumination Technical Report, CIE 2017 Colour Fidelity Index for accurate scientific use, CIE 224:2017, 2017.
[34] M. L. Lo, T. H. Yang, and C. C. Lee, “Fabrication of a tunable daylight simulator,” Applied Optics, 50(9):C95–9, 2011.
[35] A. Llenas and J. Carreras, “Arbitrary spectral matching using multi-LED lighting systems,” Optical Engineering, 58(3), 035105, 2019.
[36] W. Hu and W. Davis, “Spectral optimization for human-centric lighting using a genetic algorithm and a modified Monte Carlo method,” OSA Advanced Photonics Congress (AP) 2020, paper PvM2G.4, Washington, United States, July 13–16, 2020.
[37] Y. J. Tam, V. Kalavally, and J. Parkkinen, “Mixed-color LED lighting with circadian benefits,” LS14, Como, Italy, January, 2014.
[38] B. Zandi, A. Eissfeldt, A. Herzog, and T. Q. Khanh, “Correlated color temperature is not a suitable proxy for the biological potency of light,” Energies, 14(3), 527, 2021.
[39] J. H. Holland. Adaptation in Natural and Artificial Systems, The MIT Press, 1992.
[40] 張哲瑋. 室內光源的等效黑視素照度及晝夜節律刺激值對靜態工作專注力之主客觀探討. 國立中央大學,碩士論文, June 2022.
[41] M. Warren and W. Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.
[42] AIM. Artificial Neural Networks 101. Source:https://analyticsindiamag.com/artificial-neural-networks-101/, accessed on July 2022.
[43] Deep Learning with R. Source:https://livebook.manning.com/book/deep-learning-with-r/chapter-3/v-1/20, accessed on 2023/03/27.
[44] National Electrical Manufacturers Association, American National Standard for Electric Lamps Specifications for the Chromaticity of Solid-state Lighting Products, ANSI-C78.377, 2015.
[45] LEDCube. Source:http://www.thouslite.com/PRODUCTS/16.html, accessed on 2021/11/18.
[46] THOUSLITE LEDCube中文使用手冊V3, 2015.
[47] CRI Illuminance Meter CL-70F. Source:https://www.konicaminolta.com/instruments/download/catalog/light/pdf/cl70f_catalog_eng.pdf, accessed on 2023/03/21.
[48] 胡毓堅. 照明光源的色溫及晝夜節律刺激值對室內靜態工作專注力之影響研究. 國立中央大學,碩士論文, June 2021.
[49] International Commission on Illumination Technical Report, Colorimetry , 4th Edition, CIE 015:2018, 2018.
[50] International Commission on Illumination Technical Report, Method of Measuring and Specifying Colour Rendering Properties of Light Sources, CIE 013.3-1995, 1995.
[51] C. Ferreira, “Gene expression programming: A new adaptive algorithm for solving problems,” Complex Systems, 13(2):87–129, 2001.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明