參考文獻 |
1. Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A., Recycling of carbon dioxide to methanol and derived products - closing the loop. Chem. Soc. Rev. 2014, 43, 7995-8048.
2. Ganesh, I., Electrochemical conversion of carbon dioxide into renewable fuel chemicals - The role of nanomaterials and the commercialization. Renew. Sust. Energ. Rev. 2016, 59, 1269-1297.
3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
4. Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
5. Schouten, K.; Kwon, Y.; Van Der Ham, C.; Qin, Z.; Koper, M., A new mechanism for the selectivity to C 1 and C 2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902-1909.
6. Gattrell, M.; Gupta, N.; Co, A., Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manag. 2007, 48, 1255-1265.
7. Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X., Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 2017, 3, 560-587.
8. Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Zuttel, A., Selective and Stable Electroreduction of CO2 to CO at the Copper/Indium Interface. ACS Catal. 2018, 8, 6571-6581.
9. Zhao, Y.; Wang, C. Y.; Wallace, G. G., Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 10710-10718.
10. Wang, A. Q.; Liu, X. Y.; Mou, C. Y.; Zhang, T., Understanding the synergistic effects of gold bimetallic catalysts. J. Catal. 2013, 308, 258-271.
11. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-4082.
12. Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275.
13. Ting, L. R. L.; Yeo, B. S., Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr. Opin. Electrochem. 2018, 8, 126-134.
14. Li, H.; Oloman, C., Development of a continuous reactor for the electro-reduction of carbon dioxide to formate - Part 1: Process variables. J. Appl. Electrochem. 2006, 36, 1105-1115.
15. Javier, A.; Chmielowiec, B.; Sanabria-Chinchilla, J.; Kim, Y. G.; Baricuatro, J. H.; Soriaga, M. P., A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis 2015, 6, 127-131.
16. Zheng, T. T.; Jiang, K.; Wang, H. T., Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts. Adv. Mater. 2018, 30, 1802066.
17. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050-7059.
18. Jiang, K.; Huang, Y. F.; Zeng, G. S.; Toma, F. M.; Goddard, W. A.; Bell, A. T., Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206-1214.
19. Lum, Y. W.; Yue, B. B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W., Optimizing C-C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C 2017, 121, 14191-14203.
20. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C., Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717-12723.
21. Jia, Y.; Li, F.; Fan, K.; Sun, L., Cu-based bimetallic electrocatalysts for CO2 reduction. Adv. Powder Mater. 2022, 1, 100012.
22. Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F., Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO2 for Efficient CO2 Photoreduction. ACS Nano 2021, 15, 14453-14464.
23. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T. T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7, 4822-4827.
24. Zhao, S. L.; Li, S.; Guo, T.; Zhang, S. S.; Wang, J.; Wu, Y. P.; Chen, Y. H., Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano-micro Lett. 2019, 11, 1-19.
25. Chen, Y. H.; Kanan, M. W., Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. J. Am. Chem. Soc. 2012, 134, 1986-1989.
26. Liu, Z. P.; Chen, J. J.; Guo, H. S.; Huang, X. X., Reduction-tolerant SnO2 assisted by surface hydroxyls for selective CO2 electroreduction to formate over wide potential range. Nano Energy 2023, 108, 108193.
27. Genz, N. S.; Kallio, A. J.; Oord, R.; Krumeich, F.; Pokle, A.; Prytz, O.; Olsbye, U.; Meirer, F.; Huotari, S.; Weckhuysen, B. M., Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202209334.
28. Zou, J. S.; Lee, C. Y.; Wallace, G. G., Boosting Formate Production from CO2 at High Current Densities Over a Wide Electrochemical Potential Window on a SnS Catalyst. Adv. Sci. 2021, 8, 2004521.
29. Ye, K.; Cao, A.; Shao, J. Q.; Wang, G.; Si, R.; Ta, N.; Xiao, J. P.; Wang, G. X., Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 2020, 65, 711-719.
30. Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q., Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.
31. Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. C.; Zhao, C., Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.
32. Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z., Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catal. 2019, 9, 9411-9417.
33. Morimoto, M.; Takatsuji, Y.; Yamasaki, R.; Hashimoto, H.; Nakata, I.; Sakakura, T.; Haruyama, T., Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO. Electrocatalysis 2018, 9, 323-332.
34. Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W., Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis 2021, 11, 11103-11108.
35. Hori, Y. i., Electrochemical CO 2 reduction on metal electrodes. Modern aspects of electrochemistry 2008, 89-189.
36. Ju, W. B.; Zeng, J. Q.; Bejtka, K.; Ma, H.; Rentsch, D.; Castellino, M.; Sacco, A.; Pirri, C. F.; Battaglia, C., Sn-Decorated Cu for Selective Electrochemical CO2 to CO Conversion: Precision Architecture beyond Composition Design. ACS Appl. Energy Mater. 2019, 2, 867-872.
37. Zhong, X. H.; Liang, S. J.; Yang, T. T.; Zeng, G. C.; Zhong, Z. Q.; Deng, H.; Zhang, L.; Sun, X. L., Sn Dopants with Synergistic Oxygen Vacancies Boost CO2 Electroreduction on CuO Nanosheets to CO at Low Overpotential. ACS Nano 2022, 16, 19210-19219.
38. Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q., Highly Active and Selective Electrocatalytic CO2 Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722-39727.
39. Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S., Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635-9638.
40. El Shayeb, H. A.; Abd El Wahab, F. M.; El Abedin, S. Z., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions. Corros. Sci. 2001, 43, 655-669.
41. Ren, Y.; Fang, T.; Gong, Y.; Zhou, X. G.; Zhao, G. Y.; Gao, Y.; Jia, J. Q.; Duan, Z. F., Enhanced electrochromic performances and patterning of Ni-Sn oxide films prepared by a photosensitive sol-gel method. J. Mater. Chem. C 2019, 7, 6964-6971.
42. Laursen, B. A.; Calvinho, U. D. K.; Goetjen, A. T.; Yap, M. K. K.; Hwang, S.; Yang, H. B.; Garfunkel, E.; Dismukes, G. C., CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C-1-formate production and H-2 selectivity. Electrochim. Acta 2021, 391, 138889.
43. de Smit, E.; de Groot, F. M. F.; Blume, R.; Havecker, M.; Knop-Gericke, A.; Weckhuysen, B. M., The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts. Phys. Chem. Chem. Phys. 2010, 12, 667-680.
44. Lyu, Z. H.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N., Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 1909-1915.
45. Liang, B.; Ma, J.; Su, X.; Yang, C.; Duan, H.; Zhou, H.; Deng, S.; Li, L.; Huang, Y., Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind. Eng. Chem. Res. 2019, 58, 9030-9037.
46. Wang, J.; Ji, Y. J.; Shao, Q.; Yin, R. G.; Guo, J.; Li, Y. Y.; Huang, X. Q., Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy 2019, 59, 138-145.
47. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X.; Qi, Z. M.; Wang, D. S.; Wang, Y., Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu-2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.
48. Fang, L.; Lyu, X.; Xu, J. J.; Liu, Y.; Hu, X.; Reinhart, B. J.; Li, T., Operando X-ray Absorption Spectroscopy Study of SnO2 Nanoparticles for Electrochemical Reduction of CO2 to Formate. ACS Appl. Mater. Interfaces 2022, 14, 55636–55643.
49. Ni, W. P.; Gao, Y.; Lin, Y.; Ma, C.; Guo, X. G.; Wang, S. Y.; Zhang, S. G., Nonnitrogen Coordination Environment Steering Electrochemical CO2-to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catal. 2021, 11, 5212-5221.
50. Suligoj, A.; Pavlovic, J.; Arcon, I.; Rajic, N.; Tusar, N. N., SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. Catalysts 2020, 10, 253.
51. Wang, D. N.; Yang, J. L.; Liu, J.; Li, X. F.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L., Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. J. Mater. Chem. A 2014, 2, 2306-2312.
52. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
53. Schreier, M.; Heroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Gratzel, M., Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.
54. Yue, Y.; Zou, X.; Shi, Y.; Cai, J.; Xiang, Y.; Li, Z.; Lin, S., A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2. J. Electroanal. Chem. 2023, 928, 117089.
55. Ding, Y. Y.; Xu, Y. Y.; Zhang, L. X., Tin Alloying Enhances Catalytic Selectivity of Copper Surface: A Mechanistic Study Based on First-Principles Calculations. J. Phys. Chem. Lett. 2021, 12, 3031-3037.
56. Dong, W. J.; Lim, J. W.; Hong, D. M.; Park, J. Y.; Cho, W. S.; Baek, S.; Yoo, C. J.; Kim, W.; Lee, J. L., Evidence of Local Corrosion of Bimetallic Cu-Sn Catalysts and Its Effects on the Selectivity of Electrochemical CO2 Reduction. ACS Appl. Energy Mater. 2020, 3, 10568-10577.
57. Lai, Q.; Yang, N.; Yuan, G. Q., Highly efficient In-Sn alloy catalysts for electrochemical reduction of CO2 to formate. Electrochem. Commun. 2017, 83, 24-27.
58. Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z. P.; Rahim, L. R. A.; Kiy, A.; Kluth, P.; Guo, X. Y.; Zhu, Y.; Chen, H. J.; Amal, R.; Tricoli, A., Multifunctional nanostructures of Au-Bi(2)O(3)fractals for CO(2)reduction and optical sensing. J. Mater. Chem. A 2020, 8, 11233-11245.
59. Zeng, J. Q.; Bejtka, K.; Ju, W. B.; Castellino, M.; Chiodoni, A.; Sacco, A.; Farkhondehfal, M. A.; Hernandez, S.; Rentsch, D.; Battaglia, C.; Pirri, C. F., Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B 2018, 236, 475-482.
60. Ju, W. B.; Jiang, F. Z.; Ma, H.; Pan, Z. Y.; Zhao, Y. B.; Pagani, F.; Rentsch, D.; Wang, J.; Battaglia, C., Electrocatalytic Reduction of Gaseous CO2 to CO on Sn/Cu-Nanofiber-Based Gas Diffusion Electrodes. Adv. Energy Mater. 2019, 9, 1901514.
61. Huo, S. J.; Weng, Z.; Wu, Z. S.; Zhong, Y. R.; Wu, Y. S.; Fang, J. H.; Wang, H. L., Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519-28526.
62. Stojkovikj, S.; El-Nagar, G. A.; Firschke, F.; Perez, L. C. P.; Choubrac, L.; Najdoski, M.; Mayer, M. T., Electrocatalyst Derived from Waste Cu-Sn Bronze for CO2 Conversion into CO. ACS Appl. Mater. Interfaces 2021, 13, 38161-38169.
63. Morimoto, M.; Takatsuji, Y.; Iikubo, S.; Kawano, S.; Sakakura, T.; Haruyama, T., Experimental and Theoretical Elucidation of Electrochemical CO2 Reduction on an Electrodeposited Cu3Sn Alloy. J. Phys. Chem. C 2019, 123, 3004-3010.
64. Kim, Y. E.; Lee, W.; Youn, M. H.; Jeong, S. K.; Kim, H. J.; Park, J. C.; Park, K. T., Leaching-resistant SnO2/gamma-Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate. J. Ind. Eng. Chem. 2019, 78, 73-78.
65. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P., A Mn-N-3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.
66. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B.; Chen, W. X.; Wang, D. S.; Zhang, J. T.; Li, Y. D., Discovery of main group single Sb-N-4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856-2863.
67. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R.; Gao, J. J.; Yang, X. F.; Chen, W.; Huang, Y. Q.; Chen, H. M.; Li, C. M.; Zhang, T.; Liu, B., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147. |