博碩士論文 110329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.216.222.174
姓名 李大衞(Da-Wei Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 探討氧化銅-二氧化錫介面之協同效應用於電催化二氧化碳還原反應之研究
(Revealing the Synergistic Effect of CuO-SnO2 Interface on Electrochemical CO2 Reduction Reaction Performance)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 近年來,環境污染和能源需求的日益增長已成為全球共同面臨的挑戰。為了因應這個挑戰,減少碳排放是必要的,而二氧化碳還原反應(CO2 reduction reaction, CO2RR)則是可行的方法之一。CO2RR利用由再生能源產生的電能將二氧化碳轉化為一氧化碳(CO)與甲酸(HCOOH)等高價值產物,這種反應被認為能夠實現真正的碳中和。然而,電化學CO2RR觸媒面臨的挑戰包含:與析氫反應(hydrogen evolution reaction, HER)的競爭,CO2RR活性低,產物選擇性不佳等。為了解決上述問題,目前科學家們已經開發了許多二元觸媒。銅(Cu)與錫(Sn)雙元觸媒具有良好的協同效應而被廣泛用作CO2RR觸媒,但為了更好的效能,雙元觸媒的相與組成仍需要進一步探討與優化。
本研究製備了相同原子比(Cu/Sn=99/1)的Cu-SnO2/C與CuO-SnO2/C,X射線光電子能譜(X-ray photoelectron spectroscopy)的分析結果證實了Cu與Sn原子之間具電子轉移效應。在不同電壓下,Cu-SnO2/C 與 CuO-SnO2/C比Cu/C,CuO/C及SnO2/C 有更高的CO法拉第效率,顯示Cu / CuO與SnO2之間的協同效應能有效抑制HER反應,並提高CO選擇性。另外,CuO-SnO2/C展現最佳的CO選擇性及穩定性,在-0.8 V (vs. RHE)下,CO法拉第效率達到95 %,並在10小時後仍維持90%,相比Cu-SnO2/C僅有80%且維持5小時,證實CuO-SnO2之間的介面比起Cu-SnO2介面有更強的協同效應,對於改善CO選擇性及穩定性有最佳的效果。
另外,Cu與Sn原子比例與CO2RR表現的關係也被進一步探討,99CuO-SnO2/C達到95%的CO法拉第效率,隨著Sn含量上升,13CuO-SnO2/C (Cu/Sn=93/7) 的CO法拉第效率僅剩46 %,另外發現有40%的HCOOH法拉第效率。在原位X光吸收光譜(in-situ X-ray absorption spectroscopy)分析中發現,99CuO-SnO2/C具有最佳的CO選擇性的原因源於其Sn-Cu鍵結,當添加少量的Sn,Sn容易與Cu結合並產生大量Sn-Cu鍵結;隨著Sn含量上升,Sn原子間容易團聚並形成Sn-Sn鍵結,使得產物選擇性從CO轉向HCOOH。另外,SnO2修飾CuO觸媒預防SnO2被還原成Sn,維持CO2-CO轉換的活性位點。
為了確認 CuO跟SnO2之間的協同效應,製備了CuO 與 SnO2物理混合 (Cu/Sn=99/1)樣品,其只有73% CO法拉第效率並只能維持5小時,證明物理混合只產生有限的協同效應,且確認大量的CuO-SnO2介面結合是達到最佳CO2RR效能的關鍵。
本研究證明了CuO和SnO2對CO2-CO轉化的協同效應,並探討了原子比對選擇性的影響,為應用於CO2RR的觸媒設計提供了新的見解。
摘要(英) As the increasing demand for energy and the rising environmental pollution become global challenges, the electrochemical carbon dioxide reduction reaction (CO2RR) has emerged as a potential solution for reducing carbon emissions. CO2RR uses electric energy from sustainable energy sources to convert CO2 into high-value products, such as carbon monoxide (CO) and formic acid (HCOOH), offering a promising path towards true carbon neutrality. However, CO2RR faces several hurdles, including competition with the hydrogen evolution reaction, low CO2RR activity, and poor product selectivity. To address these issues, scientists have developed many binary catalysts, including copper (Cu) and tin (Sn) bimetallic catalysts, which exhibit strong synergistic effects in CO2RR. However, to improve the performance, the phases and compositions on binary catalysts needs further exploration and optimization.
In this study, Cu-SnO2/C and CuO-SnO2/C with the same atomic ratio of Cu/Sn = 99/1 were prepared. X-ray photoelectron spectroscopy analysis confirmed the electron transfer effect between Cu and Sn atoms. Under different voltages, Cu-SnO2/C and CuO-SnO2/C showed higher CO faradaic efficiency (FECO) than Cu/C, CuO/C, and SnO2/C, indicating that the synergistic effect between Cu/CuO and SnO2 could effectively suppress the HER reaction and enhance CO selectivity. Additionally, CuO-SnO2/C exhibited the best CO selectivity and stability, with a FECO of 95% at -0.8 V (vs. RHE) and maintaining 90% after 10 hours, compared to 80% for Cu-SnO2/C within 5 hours. These results indicate that the CuO-SnO2 interface demonstrates a superior synergistic effect compared to Cu-SnO2 interface, leading to the best improvement of CO selectivity and stability.
Furthermore, the relationship between the Cu/Sn atomic ratio and CO2RR performance was further explored. 99CuO-SnO2/C achieved a FECO of 95%, while the FECO of 13CuO-SnO2/C (Cu/Sn=93/7) only reached 46% and showed a FEHCOOH of 40%. In-situ X-ray absorption spectroscopy analysis revealed that the best CO selectivity of 99CuO-SnO2/C was due to the Sn-Cu bonding. When a small amount of Sn was added, numerous Sn-Cu bonds were formed. As the Sn content increased, Sn tended to aggregate and form Sn-Sn bonds, causing a shift in selectivity from CO to HCOOH. In addition, SnO2-modified CuO catalysts could prevent SnO2 from being reduced to Sn and maintain the activity site for CO2-CO conversion.
To confirm the synergistic effect between CuO and SnO2, physically mixed samples of CuO and SnO2 with Cu/Sn of 99/1 were prepared, which only achieved a FECO of 73% and maintained activity for 5 hours. This result highlights that physical mixing only produces limited synergistic effects, and a large number of CuO-SnO2 interfaces are crucial for achieving optimal CO2-CO conversion.
This study demonstrates the synergistic effect of CuO and SnO2 on CO2-CO conversion and investigates the impact of the atomic ratio on selectivity, providing new insights for catalyst design in CO2RR applications.
關鍵字(中) ★ 二氧化碳還原反應
★ 協同效應
★ 銅
★ 錫
★ 雙元觸媒
★ 法拉第效率
★ 選擇性
★ 臨場
★ X光吸收光譜
關鍵字(英) ★ carbon dioxide reduction reaction (CO2RR)
★ synergistic effect
★ copper
★ tin
★ bimetallic catalysts
★ faradaic efficiency (FE)
★ selectivity
★ in-situ
★ X-ray absorption spectroscopy
論文目次 摘要 i
Abstract iii
致謝 v
List of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Mechanism and Catalysts of CO2RR 2
1.2 Cu and Sn Catalysts 5
1.3 Synergistic Effect of Cu-Sn Catalysts 7
1.4 Motivation and Approach 9
Chapter 2 Experimental Section 10
2.1 Preparation of Catalysts 10
2.1.1 Chemicals 10
2.1.2 Synthesis of the Catalysts 10
2.2 Materials Characterizations of Catalysts 11
2.3 Electrochemical Characterizations of Catalysts 12
Chapter 3 Results and Discussion 14
3.1 The Effect of Cu Oxidation States on the CO2RR 14
3.1.1 Materials Characterizations 14
3.1.2 Electrochemical Characterizations 21
3.2 Effects of Cu/Sn Ratio on the Selectivity 27
3.2.1 Materials Characterizations 27
3.2.2 Electrochemical Characterizations 30
3.3 Effect of CuO-SnO2 Interface 41
Chapter 4 Conclusions 44
Reference 46
參考文獻 1. Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G. K. S.; Olah, G. A., Recycling of carbon dioxide to methanol and derived products - closing the loop. Chem. Soc. Rev. 2014, 43, 7995-8048.
2. Ganesh, I., Electrochemical conversion of carbon dioxide into renewable fuel chemicals - The role of nanomaterials and the commercialization. Renew. Sust. Energ. Rev. 2016, 59, 1269-1297.
3. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
4. Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
5. Schouten, K.; Kwon, Y.; Van Der Ham, C.; Qin, Z.; Koper, M., A new mechanism for the selectivity to C 1 and C 2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902-1909.
6. Gattrell, M.; Gupta, N.; Co, A., Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manag. 2007, 48, 1255-1265.
7. Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X., Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 2017, 3, 560-587.
8. Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Zuttel, A., Selective and Stable Electroreduction of CO2 to CO at the Copper/Indium Interface. ACS Catal. 2018, 8, 6571-6581.
9. Zhao, Y.; Wang, C. Y.; Wallace, G. G., Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 10710-10718.
10. Wang, A. Q.; Liu, X. Y.; Mou, C. Y.; Zhang, T., Understanding the synergistic effects of gold bimetallic catalysts. J. Catal. 2013, 308, 258-271.
11. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-4082.
12. Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275.
13. Ting, L. R. L.; Yeo, B. S., Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide. Curr. Opin. Electrochem. 2018, 8, 126-134.
14. Li, H.; Oloman, C., Development of a continuous reactor for the electro-reduction of carbon dioxide to formate - Part 1: Process variables. J. Appl. Electrochem. 2006, 36, 1105-1115.
15. Javier, A.; Chmielowiec, B.; Sanabria-Chinchilla, J.; Kim, Y. G.; Baricuatro, J. H.; Soriaga, M. P., A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis 2015, 6, 127-131.
16. Zheng, T. T.; Jiang, K.; Wang, H. T., Recent Advances in Electrochemical CO2-to-CO Conversion on Heterogeneous Catalysts. Adv. Mater. 2018, 30, 1802066.
17. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F., New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050-7059.
18. Jiang, K.; Huang, Y. F.; Zeng, G. S.; Toma, F. M.; Goddard, W. A.; Bell, A. T., Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206-1214.
19. Lum, Y. W.; Yue, B. B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W., Optimizing C-C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C 2017, 121, 14191-14203.
20. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C., Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717-12723.
21. Jia, Y.; Li, F.; Fan, K.; Sun, L., Cu-based bimetallic electrocatalysts for CO2 reduction. Adv. Powder Mater. 2022, 1, 100012.
22. Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F., Synergistic Effect of Cu Single Atoms and Au-Cu Alloy Nanoparticles on TiO2 for Efficient CO2 Photoreduction. ACS Nano 2021, 15, 14453-14464.
23. Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T. T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7, 4822-4827.
24. Zhao, S. L.; Li, S.; Guo, T.; Zhang, S. S.; Wang, J.; Wu, Y. P.; Chen, Y. H., Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano-micro Lett. 2019, 11, 1-19.
25. Chen, Y. H.; Kanan, M. W., Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. J. Am. Chem. Soc. 2012, 134, 1986-1989.
26. Liu, Z. P.; Chen, J. J.; Guo, H. S.; Huang, X. X., Reduction-tolerant SnO2 assisted by surface hydroxyls for selective CO2 electroreduction to formate over wide potential range. Nano Energy 2023, 108, 108193.
27. Genz, N. S.; Kallio, A. J.; Oord, R.; Krumeich, F.; Pokle, A.; Prytz, O.; Olsbye, U.; Meirer, F.; Huotari, S.; Weckhuysen, B. M., Operando Laboratory-Based Multi-Edge X-Ray Absorption Near-Edge Spectroscopy of Solid Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202209334.
28. Zou, J. S.; Lee, C. Y.; Wallace, G. G., Boosting Formate Production from CO2 at High Current Densities Over a Wide Electrochemical Potential Window on a SnS Catalyst. Adv. Sci. 2021, 8, 2004521.
29. Ye, K.; Cao, A.; Shao, J. Q.; Wang, G.; Si, R.; Ta, N.; Xiao, J. P.; Wang, G. X., Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 2020, 65, 711-719.
30. Wang, P. T.; Qiao, M.; Shao, Q.; Pi, Y. C.; Zhu, X.; Li, Y. F.; Huang, X. Q., Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 4933.
31. Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. C.; Zhao, C., Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.
32. Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z., Selectivity Control for Electrochemical CO2 Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catal. 2019, 9, 9411-9417.
33. Morimoto, M.; Takatsuji, Y.; Yamasaki, R.; Hashimoto, H.; Nakata, I.; Sakakura, T.; Haruyama, T., Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO. Electrocatalysis 2018, 9, 323-332.
34. Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W., Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis 2021, 11, 11103-11108.
35. Hori, Y. i., Electrochemical CO 2 reduction on metal electrodes. Modern aspects of electrochemistry 2008, 89-189.
36. Ju, W. B.; Zeng, J. Q.; Bejtka, K.; Ma, H.; Rentsch, D.; Castellino, M.; Sacco, A.; Pirri, C. F.; Battaglia, C., Sn-Decorated Cu for Selective Electrochemical CO2 to CO Conversion: Precision Architecture beyond Composition Design. ACS Appl. Energy Mater. 2019, 2, 867-872.
37. Zhong, X. H.; Liang, S. J.; Yang, T. T.; Zeng, G. C.; Zhong, Z. Q.; Deng, H.; Zhang, L.; Sun, X. L., Sn Dopants with Synergistic Oxygen Vacancies Boost CO2 Electroreduction on CuO Nanosheets to CO at Low Overpotential. ACS Nano 2022, 16, 19210-19219.
38. Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q., Highly Active and Selective Electrocatalytic CO2 Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722-39727.
39. Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S., Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635-9638.
40. El Shayeb, H. A.; Abd El Wahab, F. M.; El Abedin, S. Z., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions. Corros. Sci. 2001, 43, 655-669.
41. Ren, Y.; Fang, T.; Gong, Y.; Zhou, X. G.; Zhao, G. Y.; Gao, Y.; Jia, J. Q.; Duan, Z. F., Enhanced electrochromic performances and patterning of Ni-Sn oxide films prepared by a photosensitive sol-gel method. J. Mater. Chem. C 2019, 7, 6964-6971.
42. Laursen, B. A.; Calvinho, U. D. K.; Goetjen, A. T.; Yap, M. K. K.; Hwang, S.; Yang, H. B.; Garfunkel, E.; Dismukes, G. C., CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C-1-formate production and H-2 selectivity. Electrochim. Acta 2021, 391, 138889.
43. de Smit, E.; de Groot, F. M. F.; Blume, R.; Havecker, M.; Knop-Gericke, A.; Weckhuysen, B. M., The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts. Phys. Chem. Chem. Phys. 2010, 12, 667-680.
44. Lyu, Z. H.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N., Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 1909-1915.
45. Liang, B.; Ma, J.; Su, X.; Yang, C.; Duan, H.; Zhou, H.; Deng, S.; Li, L.; Huang, Y., Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol. Ind. Eng. Chem. Res. 2019, 58, 9030-9037.
46. Wang, J.; Ji, Y. J.; Shao, Q.; Yin, R. G.; Guo, J.; Li, Y. Y.; Huang, X. Q., Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy 2019, 59, 138-145.
47. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X.; Qi, Z. M.; Wang, D. S.; Wang, Y., Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu-2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.
48. Fang, L.; Lyu, X.; Xu, J. J.; Liu, Y.; Hu, X.; Reinhart, B. J.; Li, T., Operando X-ray Absorption Spectroscopy Study of SnO2 Nanoparticles for Electrochemical Reduction of CO2 to Formate. ACS Appl. Mater. Interfaces 2022, 14, 55636–55643.
49. Ni, W. P.; Gao, Y.; Lin, Y.; Ma, C.; Guo, X. G.; Wang, S. Y.; Zhang, S. G., Nonnitrogen Coordination Environment Steering Electrochemical CO2-to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catal. 2021, 11, 5212-5221.
50. Suligoj, A.; Pavlovic, J.; Arcon, I.; Rajic, N.; Tusar, N. N., SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal from Wastewater under Solar Light. Catalysts 2020, 10, 253.
51. Wang, D. N.; Yang, J. L.; Liu, J.; Li, X. F.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L., Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. J. Mater. Chem. A 2014, 2, 2306-2312.
52. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
53. Schreier, M.; Heroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Gratzel, M., Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.
54. Yue, Y.; Zou, X.; Shi, Y.; Cai, J.; Xiang, Y.; Li, Z.; Lin, S., A low crystallinity CuO-SnO2/C catalyst for efficient electrocatalytic reduction of CO2. J. Electroanal. Chem. 2023, 928, 117089.
55. Ding, Y. Y.; Xu, Y. Y.; Zhang, L. X., Tin Alloying Enhances Catalytic Selectivity of Copper Surface: A Mechanistic Study Based on First-Principles Calculations. J. Phys. Chem. Lett. 2021, 12, 3031-3037.
56. Dong, W. J.; Lim, J. W.; Hong, D. M.; Park, J. Y.; Cho, W. S.; Baek, S.; Yoo, C. J.; Kim, W.; Lee, J. L., Evidence of Local Corrosion of Bimetallic Cu-Sn Catalysts and Its Effects on the Selectivity of Electrochemical CO2 Reduction. ACS Appl. Energy Mater. 2020, 3, 10568-10577.
57. Lai, Q.; Yang, N.; Yuan, G. Q., Highly efficient In-Sn alloy catalysts for electrochemical reduction of CO2 to formate. Electrochem. Commun. 2017, 83, 24-27.
58. Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z. P.; Rahim, L. R. A.; Kiy, A.; Kluth, P.; Guo, X. Y.; Zhu, Y.; Chen, H. J.; Amal, R.; Tricoli, A., Multifunctional nanostructures of Au-Bi(2)O(3)fractals for CO(2)reduction and optical sensing. J. Mater. Chem. A 2020, 8, 11233-11245.
59. Zeng, J. Q.; Bejtka, K.; Ju, W. B.; Castellino, M.; Chiodoni, A.; Sacco, A.; Farkhondehfal, M. A.; Hernandez, S.; Rentsch, D.; Battaglia, C.; Pirri, C. F., Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Appl. Catal. B 2018, 236, 475-482.
60. Ju, W. B.; Jiang, F. Z.; Ma, H.; Pan, Z. Y.; Zhao, Y. B.; Pagani, F.; Rentsch, D.; Wang, J.; Battaglia, C., Electrocatalytic Reduction of Gaseous CO2 to CO on Sn/Cu-Nanofiber-Based Gas Diffusion Electrodes. Adv. Energy Mater. 2019, 9, 1901514.
61. Huo, S. J.; Weng, Z.; Wu, Z. S.; Zhong, Y. R.; Wu, Y. S.; Fang, J. H.; Wang, H. L., Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519-28526.
62. Stojkovikj, S.; El-Nagar, G. A.; Firschke, F.; Perez, L. C. P.; Choubrac, L.; Najdoski, M.; Mayer, M. T., Electrocatalyst Derived from Waste Cu-Sn Bronze for CO2 Conversion into CO. ACS Appl. Mater. Interfaces 2021, 13, 38161-38169.
63. Morimoto, M.; Takatsuji, Y.; Iikubo, S.; Kawano, S.; Sakakura, T.; Haruyama, T., Experimental and Theoretical Elucidation of Electrochemical CO2 Reduction on an Electrodeposited Cu3Sn Alloy. J. Phys. Chem. C 2019, 123, 3004-3010.
64. Kim, Y. E.; Lee, W.; Youn, M. H.; Jeong, S. K.; Kim, H. J.; Park, J. C.; Park, K. T., Leaching-resistant SnO2/gamma-Al2O3 nanocatalyst for stable electrochemical CO2 reduction into formate. J. Ind. Eng. Chem. 2019, 78, 73-78.
65. Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P., A Mn-N-3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.
66. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B.; Chen, W. X.; Wang, D. S.; Zhang, J. T.; Li, Y. D., Discovery of main group single Sb-N-4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856-2863.
67. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R.; Gao, J. J.; Yang, X. F.; Chen, W.; Huang, Y. Q.; Chen, H. M.; Li, C. M.; Zhang, T.; Liu, B., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140-147.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2023-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明