博碩士論文 110226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.14.15.94
姓名 余俊毅(Jun-Yi Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 MR系統全視角30度與50度耦合鏡頭設計與製造暨深度攝影機光學品質檢測
(Design and Fabrication of FOV 30-degree Projection Lens and Design of FOV 50-degree Projection Lens for MR Systems and Optical Image Quality Evaluation of Depth Cameras)
相關論文
★ 白光LED於住宅照明之設計與應用★ 超廣角車用鏡頭設計
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 光學變焦之軌跡優化控制★ LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
★ 利用光展量概念之微型投影機光學設計方法與實作★ 光學顯微鏡之鏡頭設計
★ 手機上隱藏式指紋辨識設計★ DLP微型投影系統之光路設計
★ 高效率藍光碟片讀取頭★ 模組化雙波長光學讀寫頭的設計與光學讀寫頭應用在角度量測的研究
★ 數位相機之鏡頭設計★ 單光電偵測器之複合式光學讀寫頭
★ 三百萬畫素二點七五倍光學變焦手機鏡頭設計★ 稜鏡玻璃選取對色差的影響與校正
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-25以後開放)
摘要(中) 本文提出了一種用於VR、AR、MR等HMD系統的投影鏡頭。該鏡頭的特點是光圈設計在鏡頭的出光面,並能輸出平行光,使其能夠輕鬆與後續的導光系統對接。為了考慮成本因素,所有鏡片都採用了球面玻璃材料進行設計和製造。本文以鏡頭的影像品質為主要研究方向,不僅設計了投影鏡頭,探討了光學畸變和電視畸變之間的關係,還實際檢測了成品鏡頭的影像品質。最後本文還研究了一種鏡頭影像品質的檢測方法。本文目的在於提供一種高品質的投影鏡頭,以改善VR、AR、MR等HMD系統的影像效果。
此鏡頭設計分作全視角30度與全視角50度兩種設計,全視角30度投影鏡頭設計由九片玻璃球面鏡片與兩片平板玻璃所組成,由於此鏡頭設計用於反射式LCOS面板,因此兩片平板玻璃分別為偏振分光鏡(PBS)與面板保護玻璃。此鏡頭入瞳口徑為14 mm,所有鏡片的有效口徑皆小於23 mm,鏡頭有效焦距為16.443 mm,F-number為1.1745,MTF在28 lp/mm時大於0.583,橫向色差小於感測器一個畫素大小,光學畸變小於2%,電視畸變小於1.49%,相對照度大於82.05%,本鏡頭設計實際製造並檢測實體鏡頭其中心視場影像品質可達33PPD與水平方向左右0.7視場影像品質可達23PPD。接著是全視角50度投影鏡頭設計,則是由九片玻璃球面鏡片與1片平板玻璃所組成,此鏡頭設計用於自發光OLED面板,因此1片平板玻璃為面板保護玻璃。鏡頭入瞳口徑為10 mm,所有鏡片的有效口徑皆小於20 mm,鏡頭有效焦距為19.337 mm,F-number為1.9337,MTF在29 lp/mm時大於0.770,橫向色差小於感測器一個畫素大小,光學畸變小於0.8%,電視畸變小於0.35%,相對照度大於64.48%。
本文研究一種鏡頭影像品質的檢測方法,以Intel RealSense D455深度攝影機作拍攝實驗,根據深度攝影機規格利用物像關係式推算出逆向放大率,然後設計一Resolution Chart,其為3個視場(0.5、0.7、0.9)所組成之八個空間頻率組,透過實際拍攝此Resolution Chart,找出此鏡頭之三個最大空間頻率組,最後再以4個視場(0.3、0.5、0.7、0.9)三個空間頻率組之Resolution Chart檢測其鏡頭影像品質。
摘要(英) This paper presents a projection lens designed for HMD (Head Mounted Displays) systems, including VR, AR, and MR. The distinctive feature of this lens is that the stop is designed on the exit surface of the lens and it to output collimated light. This design allows for seamless integration with subsequent waveguide systems. To consider cost factors, all lens have been designed and manufactured using spherical glass materials. This paper focuses on the image quality of the projection lens as the main research direction. It not only designs a high-quality projection lens but also explores the relationship between optical distortion and TV Distortion. Furthermore, it conducts practical tests on the image quality of the finished lens. Lastly, this paper also investigates a method for evaluating the image quality of the lens. The aim of this study is to provide a high-quality projection lens that improves the image effects of HMD systems such as VR, AR, and MR.
This lens design is divided into two variants: a FOV 30 degree design and a FOV 50 degree design. The FOV 30-degree projection lens consists of nine glass spherical lens and two flat glass plates. Since this lens design is intended for use with reflective LCOS panels, the two flat glass plates are polarizing beam splitter(PBS) and panel protection glass, respectively.
The entrance pupil diameter of this lens is 14 mm, and the effective diameters of all lens are smaller than 23 mm. The lens has an effective focal length of 16.443 mm, an F-number of 1.1745, an MTF greater than 0.583 at 28 lp/mm. A lateral chromatic aberration smaller than one pixel size of the sensor, optical distortion below 2%, TV distortion below 1.49%, and Relative Illuminance greater than 82.05%. The lens design is manufactured and tested, resulting in a center field image quality of 33 PPD and a horizontal 0.7 field image quality of 23 PPD.Moving on to the FOV 50 degree projection lens design, it consists of nine glass spherical lens and one flat glass plate. This lens design is specifically intended for use with emissive OLED panels, with the flat glass plate serving as panel protection glass.The lens has an entrance pupil diameter of 10 mm, and the effective diameters of all lens elements are smaller than 20 mm. The lens has an effective focal length of 19.337 mm, an F-number of 1.9337, an MTF greater than 0.770 at 29 lp/mm. A Lateral Chromatic Aberration smaller than one pixel size of the sensor, Optical Distortion below 0.8%, TV Distortion below 0.35%, and Relative Illuminance greater than 64.48%.
This paper investigates a method for evaluating the image quality of a lens using the Intel RealSense D455 depth camera. Based on the specifications of the depth camera, the inverse magnification factor is derived using the object-image relationship. Subsequently, a Resolution Chart is designed, consisting of eight spatial frequency groups formed by three fields of view (0.5, 0.7, 0.9). The lens image quality is evaluated by capturing the Resolution Chart and determining the three maximum spatial frequency groups. Finally, the lens image quality is further assessed using the Resolution Chart with four fields of view (0.3, 0.5, 0.7, 0.9) and three spatial frequency groups.
關鍵字(中) ★ 投影鏡頭設計
★ 頭戴式顯示器
★ 光學畸變
★ 電視畸變
★ 橫向色差鑑別率
★ 鏡頭製造公差分析
★ 影像品質檢測
關鍵字(英) ★ Projection lens design
★ HMD systems
★ Optical distortion
★ TV distortion
★ Lateral chromatic aberration discrimination
★ Lens manufacturing tolerance analysis
★ Image quality evaluation
論文目次 摘要 i
Abstract iii
誌謝 vi
目錄 viii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 論文架構 10
第二章 設計原理 12
2-1 投影鏡頭設計原理 12
2-1-1 MR系統架構介紹 12
2-1-2 投影鏡頭逆向設計 19
2-1-3 鏡頭視角與F-number關係 19
2-1-4 MR系統鏡頭PPD與空間頻率 22
2-2 投影鏡頭架構與放大鏡原理 24
2-3 Distortion原理與TV distortion分析 25
2-3-1 Optical Distortion 25
2-3-2 TV Distortion定義 26
2-3-3 電視畸變與水平直線扭曲量(1) 27
2-3-4 電視畸變與垂直直線扭曲量(2) 32
2-3-5 直線扭曲鑑別率計算 37
2-4 橫向色差原理與橫向色差鑑別率 38
2-4-1 橫向色差鑑別率 39
第三章 全視角30度投影鏡頭設計與檢測 40
3-1 面板規格 40
3-2 鏡頭初階規格 40
3-3 鏡頭設計目標 42
3-4 鏡頭設計流程 43
3-4-1 起始值選定 43
3-4-2 初階規格設定與鏡頭優化 44
3-4-3 LCOS面板之偏振分光鏡追加 45
3-4-4 系統反轉優化準直光 45
3-5 鏡頭設計結果 47
3-5-1 MTF 48
3-5-2 Distortion 50
3-5-3 Lateral color 53
3-5-4 相對照度 54
3-6 投影鏡頭製造公差規格 55
3-6-1 公差容忍範圍 57
3-6-2 公差分析結果 59
3-7 製造投影鏡頭檢測 64
3-7-1 逆投影檢測法 64
3-7-2 製造鏡頭影像品質檢測 66
第四章 全視角50度投影鏡頭設計與量測規格 70
4-1 面板規格 70
4-2 鏡頭初階規格 71
4-3 鏡頭設計目標 72
4-4 鏡頭設計流程 74
4-4-1 起始值選定 74
4-4-2 初階規格設定與鏡頭優化 74
4-4-3 OLED面板鏡頭修正 75
4-4-4 三組雙膠合鏡片優化鏡頭 76
4-5 鏡頭設計結果 77
4-5-1 MTF 78
4-5-2 Distortion 80
4-5-3 Lateral color 82
4-5-4 Relative illumination 84
4-6 投影鏡頭公差分析 85
4-6-1 公差分析結果 85
4-6-2 製造鏡頭影像品質預測 89
第五章 深度攝影機光學品質檢測 91
5-1 深度攝影機鏡頭介紹 91
5-1-1 深度攝影機規格 92
5-2 實驗設計 92
5-3 物距550 mm深度攝影機光學品質檢測 93
5-3-1 Resolution Chart設計 93
5-3-2 拍攝結果與分析 97
5-3-3 Resolution Chart優化再拍攝 99
5-4 實驗結論 104
第六章 結論與未來展望 105
6-1 結論 105
6-2 未來展望 106
參考文獻 108
參考文獻 [1] I. E. Sutherland, "A head-mounted three-dimensional display," in Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I, Association for Computing Machinery, New York, NY, USA, 1968.
[2] D. Laurendeau, A. Albu, E. Boivin, R. Drouin, H. Martel, D. Ouellet, and J.-M. Schwartz, "Survey of the State-of-the-Art on Synthetic Environments, Sensori-Motor Activities in Synthetic Environments, Simulation Frameworks and Real-World Abstraction Models," 2023.
[3] T. Wischgoll, "Display Systems for Visualization and Simulation in Virtual Environments," Electronic Imaging, pp. 78-88, 2017. DOI: 10.2352/ISSN.2470-1173.2017.1.VDA-391.
[4] U. S. Rathore and S. Sharma, "Google Glass," IRE Journals, vol. 1, no. 9, pp. 388, Mar. 2018. ISSN: 2456-8880.
[5] S. Park, S. Bokijonov, and Y. Choi, "Review of Microsoft HoloLens Applications over the Past Five Years," Appl. Sci., vol. 11, p. 7259, 2021. DOI: 10.3390/app11167259.
[6] K. Guttag, "Nreal Teardown Part 1: Clones and Birdbath Basics," June 1, 2021.
https://kguttag.com/2021/06/01/nreal-teardown-part-1-clones-and-birdbath-basics/.
[7] A. Ivaniuk and A. Kalinina, "Augmented reality (AR) display design based on freeform optics," in OSA Optical Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), F. Capasso, W. Chen, P. Dainese, J. Fan, J. DeGroote Nelson, F. Duerr, J. Rogers, J. Rolland, P. Clark, R. Pfisterer, H. Rehn, S. Thibault, M. Jenkins, D. Wook Kim, and N. Trela-McDonald, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper RW1A.7.
[8] Mira, FreeForm Surface Type Glasses
https://www.mirareality.com/hardware/
[9] K.W. Zhao and J.W. Pan, "Optical design for a see-through head-mounted display with high visibility," Opt. Express, vol. 24, pp. 4749-4760, 2016.
[10] D. Cheng, Q. Wang, Y. Liu, H. Chen, D. Ni, X. Wang, C. Yao, Q. Hou, W. Hou, G. Luo, and Y. Wang, "Design and manufacture AR head-mounted displays: A review and outlook," Light: Advanced Manufacturing, vol. 2, pp. 1-20, 2021. DOI: 10.37188/lam.2021.024.
[11] Lumus, Geometrical Waveguide Type Glasses
https://lumusvision.com/how-it-works/
[12] Epson, Geometrical Waveguide Type Glasses
https://phys.org/news/2016-02-world-lightest-oled-binocular-see-through.html
[13] Optinvent, Geometrical Waveguide Type Glasses
http://www.optinvent.com/our_products/ora-2/
[14] Microsoft, SRG
https://www.microsoft.com/zh-tw/hololens
[15] Magic Leap, SRG
https://www.magicleap.com/magic-leap-2
[16] M. L. Piao and N. Kim, "Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer," Appl. Opt., vol. 53, pp. 2180-2186, 2014.
[17] J. D. Waldern, R. Morad, and M. M. Popovich, "Waveguide Manufacturing for AR Displays, Past, Present and Future," in Frontiers in Optics / Laser Science, OSA Technical Digest (Optica Publishing Group, 2018), paper FW5A.1.
[18] H. Hua, A. Girardot, C. Gao, and J. P. Rolland, "Engineering of head-mounted projective displays," Appl. Opt. Vol. 39, pp. 3814-3824 (2000).
[19] H. Hua, Y. Ha, and J. P. Rolland, "Design of an ultralight and compact projection lens," Appl. Opt. Vol. 42, pp. 97-107 (2003).

[20] H. Hua and C. Gao, "Design of a bright polarized head-mounted projection display," Appl. Opt. Vol. 46, pp. 2600-2610 (2007).

[21] R. Zhang and H. Hua, "Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays," Appl. Opt. Vol. 47, pp. 2888-2896 (2008).

[22] Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, "Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements," Appl. Opt. Vol. 52, pp. C88-C99 (2013).

[23] M. K. Tehrani and S. S. M. Fard, "Design of Diffraction Limited Head Mounted Display Optical System Based on High Efficiency Diffractive Elements," Curr. Opt. Photon. Vol. 1, pp. 150-156 (2017).

[24] W.S. Sun, C.L. Tien, and Y. H. Liu, "Optical design for the lens depth of a periscope-type 3 × zoom lens with 8-megapixel mobile phone," Opt. Quantum Electron. Vol. 52, pp. 141 (2020).

[25] Screen-door effect
https://en.wikipedia.org/wiki/Screen-door_effect
[26] E. Hecht, OPTICS (Addison-Wesley, 4th ed., 2001), chap. 6.
[27] 周柏亨,「大口徑投影機鏡頭設計投射在螢幕上之直線鑑別率、橫向色差鑑別率、相對照度與MTF並對溫度變化作分析」,中央大學,碩士論文,民國109年。
[28] W.S. Sun, C.M. Huang, and J.S. Lin, "Discussion of temperature, TV distortion, and lateral color of a 4-megapixel DLP projector lens," OSA Continuum Vol. 2, pp. 3188-3203 (2019).
[29] Himax LCOS Panel
https://www.himax.com.tw/products/microdisplay-products/front-lit-lcos/hx7028fl/
[30] Synopsys Inc., “Tolerancing,” Code V Reference Manuals, Version 2022.03
[31] 1951 USAF resolution test chart
https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart
[32] SONY OLED Panel
https://www.framos.com/en/products/ecx335s-23551
[33] Intel RealSense Depth Camera
https://www.intelrealsense.com/depth-camera-d455/
指導教授 孫文信(Wen-Shing Sun) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明