博碩士論文 105256014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.137.172.68
姓名 陳思衡(Szu-Heng Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 機車儀錶搭載角度設計及錶鏡表面處理降低陽光下反光之研究
(The Study of Motorcycle Instrument Mounting Angle and Gauge Lens Surface Treatment to Reduce Reflection under Sunlight)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-21以後開放)
摘要(中) 機車儀錶在行駛過程中,儀錶搭載角度對陽光反光的影響至關重要。本研究旨在探討機車儀錶搭載角度設計改善陽光位置反光的方法,以提高駕駛者的視線條件和行駛安全。研究首先分析機車儀錶設計與安全、陽光反光與駕駛者視線、以及搭載角度設計方法等相關理論和實踐。接著,通過實驗設計和數據收集,本研究探究儀錶搭載角度與陽光反光的關係,並提出一個新的設計方案。
新的設計方案綜合考慮陽光位置、氣象條件、駕駛者特性等因素,以實現更佳的搭載角度。實驗結果顯示,新設計方案在降低陽光反光影響方面取得顯著成效,有效提高駕駛者的視線條件。此外,本研究還對未來研究方向進行探討,包括考慮更多的外部因素、駕駛者特性與需求、智能化儀錶設計、新型材料與技術應用等。
本研究在機車儀錶搭載角度設計降低反光強度27%、使用低反光材料降低反光強度65%及明晰度提升15%,對於改善陽光位置反光方面作出重要貢獻,並為後續研究提供新的思路和方法。希望本研究的成果能夠對機車儀錶設計的改進和實踐應用產生積極影響,進而提高機車駕駛者的行駛安全和舒適性。
摘要(英) The positioning of motorcycle instrument panels is a critical factor in managing sunlight reflection while riding. This study aims to enhance the design of motorcycle instrument panel installation angles to minimize glare from sunlight, thereby improving visual conditions and rider safety. The research begins by examining relevant theories and practices related to motorcycle instrument panel design, safety considerations, sunlight reflection, driver visibility, and installation angle design methods.
Through experimental design and data collection, this study investigates the correlation between instrument panel installation angles and sunlight reflection, presenting a novel design solution. This solution takes into account factors such as sunlight position, weather conditions, and driver characteristics to determine optimal installation angles. Experimental results demonstrate significant effectiveness in reducing the impact of sunlight reflection and enhancing visibility for riders.
Furthermore, this research discusses future research directions, including the consideration of external factors, driver characteristics and preferences, intelligent instrument panel design, and the utilization of advanced materials and technologies.
This study has contributed significantly to glare reduction, achieving a 27% decrease in glare intensity through motorcycle instrument panel installation angle design and a 65% reduction by incorporating low-reflective materials. Additionally, clarity has improved by 15%. These findings offer fresh perspectives and methodologies for improving
sunlight reflection in motorcycle instrument panel design, laying the groundwork for further research. The study′s insights are expected to positively influence the advancement and practical application of motorcycle instrument panel design, ultimately enhancing the safety and comfort of motorcycle riders.
關鍵字(中) ★ 機車儀錶
★ 搭載角度
★ 智能化
★ 反光強度
★ 明晰度
關鍵字(英) ★ Motorcycle instrument panel
★ Mounting angle
★ Intelligence
★ Reflectance intensity
★ Clarity
論文目次 中文摘要---i
Abstract---ii
圖目錄---viii
表目錄---xi
一、 緒論---1
1-1 研究背景---1
1-2 研究貢獻---3
1-3 論文架構---4
二、 理論---5
2-1 反射定律 (Law of Reflection)---5
2-2 折射定律 (Law of Refraction)---6
2-3 折射率 (Refractive index)---7
2-4 折射率匹配 (Refractive index matching)---8
2-5 餘弦定律(Law of Cosines)---9
2-6 破壞性干涉(Destructive interference)---10
2-7 散射原理(Scattering of light)---12
2-8 磁性自組裝 (Magnetic field-directed self-assembly)---13
2-9 眩光指數 (Unified Glare Rating)---15
2-10 輝度 (Luminance)---16
2-11 照度 (Illuminance)---17
2-12 光穿透率 (Light Transmittance)---18
三、 研究方法---19
3-1 研究內容---19
3-1-1 系統架構---19
3-1-2 軟硬體設備---21
3-1-3 模型建構---25
3-2 研究方法---26
3-2-1 分析反射光線路徑---26
3-2-2 模擬與優化---30
3-2-3 實驗量測---35
四、 實驗與結果---36
4-1 實驗設計---36
4-1-1 實驗項目---36
4-1-2 實驗儀器---36
4-1-3 實驗被測物---38
4-2 實驗步驟---50
4-3 量測數據分析---51
4-3-1 不同表面處理的被測物式樣---51
4-3-2 量測反射光線類別---52
4-3-3 點光源經過錶鏡之反射輝度值---53
4-3-4 儀錶液晶螢幕光源穿透率---54
4-3-5 偏擺角度量測---58
4-3-6 眩光指數---60
4-4 實驗結果討論---63
五、 結論和未來展望---65
5-1 研究結論---65
5-2 未來展望---65
參考文獻---66
參考文獻 [1] 行政院主計總處 (2022)。國情統計通報(第 246 號)。台北市:行政院。 取自https://www.stat.gov.tw/News.aspx?n=2661&sms=11020
[2] 張一岑 (2004)。 人因工程學。新北市:揚智文化事業股份有限公司.
[3] Lynes, J.A. (1977). Discomfort glare and visual distraction. Lighting Research and Technology, 9(1), pp.51-52.
[4] Kent, M. G. (2016). Temporal effects in glare response (Doctoral dissertation, University of Nottingham).
[5] Pierson, C., et al. (2018). Review of factors influencing discomfort glare perception from daylight. Leukos, 14(3), 111-148.
[6] Qin, L., et al. (2019). Understanding driver distractions in fatal crashes: An exploratory empirical analysis. Journal of Safety Research, 69, 23-31.
[7] Glimne, S., et al. (2013). Measuring glare induced visual fatigue by fixation disparity variation. Work, 45(4), 431-437.
[8] Aguirre, R. C., et al. (2008). Effect of glare on simple reaction time. JOSA A, 25(7), 1790-1798.
[9] Droździel, P., et al. (2020). Drivers ’reaction time research in the conditions in the real traffic. Open Engineering, 10(1), 35-47.
[10] Hecht, E. (2017). Optics (5th ed.). Pearson Education, Incorporated.
[11] Born, M., & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (7th ed.). Cambridge University Press.
[12] Newman, J. (2008). Physics of the Life Sciences. Springer.
[13] Voermans, J., et al. (2017). The variation of flow and turbulence across the sediment–water interface. Journal of Fluid Mechanics, 824, 413-437. doi:10.1017/jfm.2017.345
[14] Walker J. Halliday D. & Resnick R. (2011). Fundamentals of physics (9th ed.). Wiley.
[15] Bhargava S.C. (2018). A Book of Physics–In Perspective (n.p.). BS Publications.
[16] Preger, C., et al. (2021). Bottom-up field-directed self-assembly of magnetic nanoparticles into ordered nano-and macrostructures. Nanotechnology, 32(19), 195603.
[17] Ye, L., Pearson, T., Cordeau, Y., Mefford, O. T., & Crawford, T. M. (2016). Triggered self-assembly of magnetic nanoparticles. Scientific reports, 6(1), 23145.
[18] Ball, D. W. (2012). Maxwell′s Equations of Electrodynamics: An Explanation. USA: SPIE Press.
[19] International commission on illumination. (1995). Discomfort Glare in Interior Lighting. Commission Internationale de l’eclairage.
[20] Rodriguez, R. G., Yamin Garretón, J. A., & Pattini, A. E. (2016). Glare and cognitive performance in screen work in the presence of sunlight. Lighting Research & Technology, 48(2), 221-238.
[21] CIE, C. (2010). Presentation of Unified Glare Rating Tables for Indoor Lighting Luminaires. Vienna, Austria: CIE Central Bureau.
[22] 張琪芬, 王泰元, & 劉芩相. (2013). 室內照明燈具統一眩光指數 (UGR) 之研究與分析. 技術學刊, 28(4), 243-249.
[23] 孫慶成, & 陳志宏. (2011). LED 的發展與照明技術應用趨勢. 前瞻科技與管理, 1(2), 1-23.
[24] Pedrotti, F. L., Pedrotti, L. S., & Pedrotti, leno M. (2017). Introduction to Optics (3rd ed.). Pearson Education Limited.
[25] Keshavarz Hedayati, M., & Elbahri, M. (2016). Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review. Materials, 9(6), 497.
[26] Verma, A., et al. (2010). Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films, 518(10), 2649-2653.
[27] Womack, G., et al. (2019). The performance and durability of single-layer sol-gel anti-reflection coatings applied to solar module cover glass. Surface and Coatings Technology, 358, 76-83.
[28] Liu, B. T., & Teng, Y. T. (2010). A novel method to control inner and outer haze of an anti-glare film by surface modification of light-scattering particles. Journal of colloid and interface science, 350(2), 421-426.
[29] Hu, L., et al. (2016). Fabrication and evaluation of dual function PMMA/nano-carbon composite particles for UV curable anti-glare coating. Progress in Organic Coatings, 101, 81-89.
[30] Becker, M. E., & Neumeier, J. (2011, June). 70.4: Optical Characterization of Scattering Anti‐Glare Layers. In SID Symposium Digest of Technical Papers (Vol. 42, No. 1, pp. 1038-1041). Oxford, UK: Blackwell Publishing Ltd.
[31] Liu, B., et al. (2011). Strength of the interactions between light-scattering particles and resins affects the haze of anti-glare films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 138-143.
[32] Hirose, E., & Sensui, N. (2021). Substrate selection of ascidian larva: Wettability and nano-structures. Journal of Marine Science and Engineering, 9(6), 634.
[33] Ryu, M., et al. (2019). Nanoscale optical and structural characterisation of silk. Beilstein Journal of Nanotechnology, 10(1), 922-929.
[34] Nakamura, Y., Toma, M., & Kajikawa, K. (2020). A visible and near-infrared broadband light absorber of cone-shaped metallic cavities. Applied Physics Express, 13(6), 062001.
[35] Uesugi, K., Nagayama, K., & Hirose, E. (2022). Keeping a Clean Surface under Water: Nanoscale Nipple Array Decreases Surface Adsorption and Adhesion Forces. Journal of Marine Science and Engineering, 10(1), 81.
[36] Budwig, R. (1994). Refractive index matching methods for liquid flow investigations. Experiments in fluids, 17(5), 350-355.
[37] Li, J., et al. (2005). Refractive‐index matching between liquid crystals and photopolymers. Journal of the Society for Information Display, 13(12), 1017-1026.
[38] Cruz, S., et al. (2017). Analysis of the bonding process and materials optimization for mitigating the Yellow Border defect on optically bonded automotive display panels. Displays, 48, 21-28.
指導教授 張榮森(Rong-Seng Chang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明