參考文獻 |
[1] E. A. Robinson and D. Clark, Basic Geophysics. 2017.
[2] J. Milsom and A. Eriksen, Field Geophysics, 4th ed. 2011.
[3] J. . McNeill, Electrical conductivity of soils and rocks, Geonics limited, vol. Technical. p. 21, 1980.
[4] S. Szalai, A. Koppán, & L. Szarka, Effect of positional inaccuracies on multielectrode results, Acta Geod. Geophys. Hungarica, vol. 43, no. 1, pp. 33–42, 2008, doi: 10.1556/AGeod.43.2008.1.3.
[5] M. H. Loke et al., Optimized arrays for 2-D resistivity survey lines with a large number of electrodes, J. Appl. Geophys., vol. 112, pp. 136–146, 2015, doi: 10.1016/j.jappgeo.2014.11.011.
[6] M. H. Loke, Tutorial: 2D and 3D electrical imaging surveys, no. May, 2015, [Online]. Available: http://www.geotomosoft.com/coursenotes.zip.
[7] K. Sudha, M. Israil, S. Mittal, & J. Rai, Soil characterization using electrical resistivity tomography and geotechnical investigations, J. Appl. Geophys., vol. 67, no. 1, pp. 74–79, 2009, doi: 10.1016/j.jappgeo.2008.09.012.
[8] A. Devi et al., Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region, J. Appl. Geophys., vol. 144, pp. 78–85, 2017, doi: 10.1016/j.jappgeo.2017.07.005.
[9] C. Oberdörster, Hydrological Characterization of a Forest Soil Using Electrical Resistivity Tomography, Univ. Bonn, p. 151, 2010.
[10] A. K. Lysdahl et al., Comparison between 2D and 3D ERT inversion for engineering site investigations - A case study from Oslo Harbour, Near Surf. Geophys., vol. 15, no. 2, pp. 201–209, 2017, doi: 10.3997/1873-0604.2016052.
[11] R. Saad, M. N. M. Nawawi, & E. T. Mohamad, Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT), Electron. J. Geotech. Eng., vol. 17 D, no. January, pp. 369–376, 2012.
[12] K. Orowe & V. S. Rangarajan, Geo-electrical resistivity and groundwater flow modells for characterization of a hardrock aquifer system, vol. 1, no. 1, pp. 12–31, 2012.
[13] M. Camporese et al., Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data, Water Resour. Res., vol. 51, no. 5, pp. 3277–3291, 2015, doi: 10.1002/2014WR016017.
[14] A. Casas et al., Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain, Environ. Geol., vol. 54, no. 3, pp. 515–520, 2008, doi: 10.1007/s00254-007-0844-1.
[15] C. S. Park, J. H. Jeong, H. W. Park, & K. Kim, Experimental study on electrode method for electrical resistivity survey to detect cavities under road pavements, Sustain., vol. 9, no. 12, 2017, doi: 10.3390/su9122320.
[16] C. Hilbich, C. Fuss, & C. Hauck, Automated time-lapse electrical resistivity tomography ( ERT ) for improved process analysis and long-term monitoring of frozen ground, Permafr. Periglac. Process., vol. 22, no. 4, pp. 306–319, 2010.
[17] M. K. Park et al., Application of electrical resistivity tomography (ERT) technique to detect underground cavities in a karst area of South Korea, Environ. Earth Sci., vol. 71, no. 6, pp. 2797–2806, 2014, doi: 10.1007/s12665-013-2658-7.
[18] D. F. Rucker et al., Electrical resistivity characterization of a reclaimed gold Mine to delineate acid rock drainage pathways, Mine Water Environ., vol. 28, no. 2, pp. 146–157, 2009, doi: 10.1007/s10230-009-0072-x.
[19] P. B. Wilkinson et al., Practical aspects of applied optimized survey design for electrical resistivity tomography, Geophys. J. Int., vol. 189, no. 1, pp. 428–440, 2012, doi: 10.1111/j.1365-246X.2012.05372.x.
[20] A. V. Christiansen & E. Auken, A global measure for depth of investigation, Near Surf. 2010 - 16th Eur. Meet. Environ. Eng. Geophys., vol. 77, no. 4, 2010, doi: 10.3997/2214-4609.20144778.
[21] A. P. Aizebeokhai, 2D and 3D geoelectrical resistivity imaging: Theory and field design, Sci. Res. Essays, vol. 5, no. 23, pp. 3592–3605, 2010.
[22] M. I. I. Abu-Shariah, Determination of cave geometry by using a geoelectrical resistivity inverse model, Eng. Geol., vol. 105, no. 3–4, pp. 239–244, 2009, doi: 10.1016/j.enggeo.2009.02.006.
[23] M. H. Loke, P. B. Wilkinson, et al, Optimized arrays for resistivity measurements confined to the perimeter of a survey area, Near Surf. Geosci. 2015 - 21st Eur. Meet. Environ. Eng. Geophys., no. April 2016, pp. 646–650, 2015, doi: 10.3997/2214-4609.201413793.
[24] M. H. Loke, J. E. Chambers et a.l, Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., vol. 95, pp. 135–156, 2013, doi: 10.1016/j.jappgeo.2013.02.017.
[25] T. Dahlin, The development of DC resistivity imaging techniques, Comput. Geosci., vol. 27, no. 9, pp. 1019–1029, 2001, doi: 10.1016/S0098-3004(00)00160-6.
[26] T. L. Ho, 3-D inversion of borehole-to-surface electrical data using a back-propagation neural network, J. Appl. Geophys., vol. 68, no. 4, pp. 489–499, 2009, doi: 10.1016/j.jappgeo.2008.06.002.
[27] O. L. Johnson & A. P. Aizebeokhai, Application of Artificial Neural Network for the Inversion of Electrical Resistivity Data, J. Informatics Math. sciiences, vol. 9, no. 2, pp. 297–316, 2017.
[28] A. Stanley Raj, Y. Srinivas et al., A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN), J. Earth Syst. Sci., vol. 123, no. 2, pp. 395–411, 2014, doi: 10.1007/s12040-014-0402-7.
[29] A. Neyamadpour, S. Taib, et al, Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application, Comput. Geosci., vol. 35, no. 11, pp. 2268–2274, 2009, doi: 10.1016/j.cageo.2009.04.004.
[30] B. Liu et al., Deep Learning Inversion of Electrical Resistivity Data, IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5715–5728, 2020, doi: 10.1109/TGRS.2020.2969040.
[31] Z. Geng & Y. Wang, Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification, Nat. Commun., vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-17123-6.
[32] J. Huang & R. L. Nowack, Machine Learning Using U-Net Convolutional Neural Networks for the Imaging of Sparse Seismic Data, Pure Appl. Geophys., vol. 177, no. 6, pp. 2685–2700, 2020, doi: 10.1007/s00024-019-02412-z.
[33] B. Liu et al., GPRInvNet: Deep Learning-Based Ground-Penetrating Radar Data Inversion for Tunnel Linings, IEEE Trans. Geosci. Remote Sens., 2021, doi: 10.1109/TGRS.2020.3046454.
[34] K. Ishitsuka et al., Object Detection in Ground-Penetrating Radar Images Using a Deep Convolutional Neural Network and Image Set Preparation by Migration, Int. J. Geophys., vol. 2018, 2018, doi: 10.1155/2018/9365184.
[35] C. Schaefer et al., Deep convolutional neural networks as strong gravitational lens detectors, Astron. Astrophys., vol. 611, pp. 1–9, 2018, doi: 10.1051/0004-6361/201731201.
[36] S. Yu et al., Deep learning for gravitational-wave data analysis: A resampling white-box approach, arXiv, vol. 2018, no. July, pp. 5715–5728, 2020, doi: 10.1051/0004-6361/201731201.
[37] S. Vjacheslav & P. Irina, Artificial neural network inversion of magnetotelluric data in terms of three‐dimensional earth macroparameters, Geophys. J. Int., vol. 142, no. 1, pp. 15–26, 2010.
[38] T. Günther & C. Rücker, Electrical Resistivity Tomography (ERT) in geophysical applications-state of the art and future challenges, Researchgate.Net, no. January, pp. 1–4, 2012, _state_of_the_art_and_future_challenges/file/504635151e4096dead.pdf.
[39] S. Szalai, et al., Colinear null arrays in geoelectrics, vol. 7, no. 1, p. 7962, 2005.
[40] M. H. Loke & T. Dahlin, A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion, J. Appl. Geophys., vol. 49, no. 3, pp. 149–162, 2002, doi: 10.1016/S0926-9851(01)00106-9.
[41] T. Dahlin & M. H. Loke, Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling, J. Appl. Geophys., vol. 38, no. 4, pp. 237–249, 1998, doi: 10.1016/S0926-9851(97)00030-X.
[42] A. Binley & A. Kemna, DC Resistivity and Induced Polarization Methods, no. October 2016. 2005.
[43] A. Samouëlian et al., Electrical resistivity survey in soil science: A review, Soil Tillage Res., vol. 83, no. 2, pp. 173–193, 2005, doi: 10.1016/j.still.2004.10.004.
[44] M. H. Loke, P. B. Wilkinson, & J. E. Chambers, Fast computation of optimized electrode arrays for 2D resistivity surveys, Comput. Geosci., vol. 36, no. 11, pp. 1414–1426, 2010, doi: 10.1016/j.cageo.2010.03.016.
[45] J. & D. K. Hurwitz, Machine Learning for Dummies. IBM Limited Edition, 2018.
[46] T. Perol, M. Gharbi, & M. Denolle, Convolutional neural network for earthquake detection and location, Sci. Adv., vol. 4, no. 2, pp. 2–9, 2018, doi: 10.1126/sciadv.1700578.
[47] I. Goodfellow, Y. Bengio, & A. Courville, Deep Learning. MIT Press, 2016.
[48] M. Alaslani & L. Elrefaei, Convolutional Neural Network Based Feature Extraction for IRIS Recognition, Int. J. Comput. Sci. Inf. Technol., vol. 10, pp. 65–78, 2018, doi: 10.5121/ijcsit.2018.10206.
[49] Q. Zhao & Z. Shang, Deep learning and Its Development, J. Phys. Conf. Ser., vol. 1948, no. 1, 2021, doi: 10.1088/1742-6596/1948/1/012023.
[50] K. Simonyan & A. Zisserman, Very deep convolutional networks for large-scale image recognition, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015.
[51] C. Szegedy et al., Going deeper with convolutions, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.
[52] M. Reichstein et al., Deep learning and process understanding for data-driven Earth system science, Nature, vol. 566, no. 7743, pp. 195–204, 2019, doi: 10.1038/s41586-019-0912-1.
[53] A. Vedaldi & K. Lenc, MatConvNet: Convolutional neural networks for MATLAB, MM 2015 - Proc. 2015 ACM Multimed. Conf., pp. 689–692, 2015, doi: 10.1145/2733373.2807412.
[54] C. Dong et al., Image Super-Resolution Using Deep Convolutional Networks, IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, 2016, doi: 10.1109/TPAMI.2015.2439281.
[55] L. Fausett, Fundamentals of Neural Network: Architectures, Algorithms, and Applications, vol. C–18, no. 6. USA: Prentice-Hall, Inc., 1994.
[56] M. Van Der Baan & C. Jutten, Neural networks in geophysical applications, Geophysics, vol. 65, no. 4, pp. 1032–1047, 2000, doi: 10.1190/1.1444797.
[57] D. Meyer, F. Leisch, & K. Hornik, The support vector machine under test, Neurocomputing, vol. 55, no. 1–2, pp. 169–186, 2003, doi: 10.1016/S0925-2312(03)00431-4.
[58] R. Jie, J. Gao, A. Vasnev, & M. N. Tran, Regularized flexible activation function combination for deep neural networks, Proc. - Int. Conf. Pattern Recognit., vol. abs/2007.1, pp. 2001–2008, 2020, doi: 10.1109/ICPR48806.2021.9412370.
[59] Y. LeCun et al., Backpropagation applied to digit recognition, Neural computation, vol. 1, no. 4. pp. 541–551, 1989,
[60] A. L. Maas, A. Y. Hannun, & A. Y. Ng, Rectifier nonlinearities improve neural network acoustic models, ICML Work. Deep Learn. Audio, Speech Lang. Process., vol. 28, 2013.
[61] Y. N. Dauphin et al, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, Adv. Neural Inf. Process. Syst., vol. 4, no. January, pp. 2933–2941, 2014.
[62] S. Ruder, An overview of gradient descent optimization algorithms, pp. 1–14, 2016,.
[63] P. Rajendra Kumar & E. B. K. Manash, Deep learning: A branch of machine learning, J. Phys. Conf. Ser., vol. 1228, no. 1, 2019, doi: 10.1088/1742-6596/1228/1/012045.
[64] V. Dumoulin & F. Visin, A guide to convolution arithmetic for deep learning, pp. 1–31, 2016,
[65] E. Shelhamer, J. Long, & T. Darrell, Fully Convolutional Networks for Semantic Segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, 2017, doi: 10.1109/TPAMI.2016.2572683.
[66] Y. Lecun, Y. Bengio, & G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.
[67] T. Chai & R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature, Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014, doi: 10.5194/gmd-7-1247-2014.
[68] H. Kuwajima, Backpropagation in Convolutional Neural Network, 2014. .
[69] T. Perol, M. Gharbi, & M. Denolle, Convolutional neural network for earthquake detection and location, Sci. Adv., vol. 4, no. 2, pp. 1–9, 2018, doi: 10.1126/sciadv.1700578.
[70] K. Zhang et al., Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017, doi: 10.1109/TIP.2017.2662206.
[71] S. Mahdizadehaghdam, A. Panahi, & H. Krim, Sparse generative adversarial network, Proc. - 2019 Int. Conf. Comput. Vis. Work. ICCVW 2019, pp. 3063–3071, 2019, doi: 10.1109/ICCVW.2019.00369.
[72] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control. Signals, Syst., vol. 2, no. 4, pp. 303–314, 1989, doi: 10.1007/BF02551274.
[73] A. Mosca & G. D. Magoulas, Adapting Resilient Propagation for Deep Learning, 2015,
[74] O. OZTURK, et al, Comparison of Fully Convolutional Networks (FCN) and U-Net for Road Segmentation from High Resolution Imageries, Int. J. Environ. Geoinformatics, vol. 7, no. 3, pp. 272–279, 2020, doi: 10.30897/ijegeo.737993.
[75] Z. Fang et al., Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping, Comput. Geosci., vol. 139, no. October 2019, p. 104470, 2020, doi: 10.1016/j.cageo.2020.104470.
[76] D. P. Kingma & J. L. Ba, Adam: A method for stochastic optimization, 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., no. July, p. 5265, 2015.
[77] E. Cuevas & J. Galvez, An optimization algorithm guided by a machine learning approach, Int. J. Mach. Learn. Cybern., vol. 10, no. 11, pp. 2963–2991, 2019, doi: 10.1007/s13042-018-00915-0.
[78] S. Yu & J. Ma, Data-driven geophysics: From dictionary learning to deep learning, arXiv, pp. 1–73, 2020.
[79] A. Graves, A. R. Mohamed, & G. Hinton, Speech recognition with deep recurrent neural networks, ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., no. 3, pp. 6645–6649, 2013, doi: 10.1109/ICASSP.2013.6638947.
[80] N. Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958, 2014.
[81] M. Araya-Polo et al., Deep-learning tomography, Lead. Edge, vol. 37, no. 1, pp. 58–66, 2018, doi: 10.1190/tle37010058.1.
[82] B. B. Bougher, Machine learning applications to geophysical data analysis, Physics (College. Park. Md)., no. August, p. 68, 2016, doi: 10.14288/1.0308786.
[83] D. Conway et al., Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks, Comput. Geosci., vol. 127, no. March, pp. 44–52, 2019, doi: 10.1016/j.cageo.2019.03.002.
[84] D. J. Lary et al., Machine Learning Applications for Earth Observation. 2018.
[85] M. Shahriari et al., A deep learning approach to the inversion of borehole resistivity measurements, Comput. Geosci., vol. 24, no. 3, pp. 971–994, 2020, doi: 10.1007/s10596-019-09859-y.
[86] G. N. Loginov & A. M. Petrov, Automatic detection of geoelectric boundaries according to lateral logging sounding data by applying a deep convolutional neural network, Russ. Geol. Geophys., vol. 60, no. 11, pp. 1319–1325, 2019, doi: 10.15372/RGG2019134.
[87] B. Xu et al., Empirical Evaluation of Rectified Activations in Convolutional Network, 2015,
[88] B. Russell, Machine learning and geophysical inversion - A numerical study, Lead. Edge, vol. 38, no. 7, pp. 512–519, 2019, doi: 10.1190/tle38070512.1.
[89] A. Mariette& K. Rahul, Efficient Learning Machines, vol. 111, no. 479. 1965.
[90] R. Johansson, Numerical python: Scientific computing and data science applications with numpy, SciPy and matplotlib, Second edition. 2018.
[91] F. Bao, X. He, & F. Zhao, Applying Data Mining to the Geosciences Data, Phys. Procedia, vol. 33, pp. 685–689, 2012, doi: 10.1016/j.phpro.2012.05.121.
[92] T. Dahlin & B. Zhou, A numerical comparison of 2D resistivity imaging with 10 electrode arrays, Geophys. Prospect., vol. 52, no. 5, pp. 379–398, 2004, doi: 10.1111/j.1365-2478.2004.00423.x.
[93] Y. Zhu et al., Converting tabular data into images for deep learning with convolutional neural networks, Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-90923-y.
[94] Z.-S. Chen, Z.-Y. Hseu, & C.-C. Tsai, The Soils of Taiwan. 2015.
[95] S. Y. Liu, Y. J. Du, L. H. Han, & M. F. Gu, Experimental study on the electrical resistivity of soil-cement admixtures, Environ. Geol., vol. 54, no. 6, pp. 1227–1233, 2008, doi: 10.1007/s00254-007-0905-5.
[96] S. Arridge et al., Mini-Workshop: Deep Learning and Inverse Problems, Oberwolfach Reports, vol. 15, no. 1, pp. 559–589, 2019, doi: 10.4171/owr/2018/11.
[97] S. Reddy, K. T. Reddy, & V. Kumari, Optimization of Deep Learning using Various Optimizers , Loss Functions and Dropout, 2019.
[98] R. Donida Labati et at., A novel pore extraction method for heterogeneous fingerprint images using Convolutional Neural Networks, Pattern Recognit. Lett., vol. 113, pp. 58–66, 2018, doi: 10.1016/j.patrec.2017.04.001.
[99] V. Badrinarayanan, A. Kendall, & R. Cipolla, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, 2017, doi: 10.1109/TPAMI.2016.2644615.
[100] J. H. Kim et al., Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., vol. 195, no. 3, pp. 1640–1656, 2013, doi: 10.1093/gji/ggt324.
[101] B. J. Singstad & C. Tronstad, Convolutional Neural Network and Rule-Based Algorithms for Classifying 12-lead ECGs, Comput. Cardiol. (2010)., vol. 2020-Septe, pp. 2–5, 2020, doi: 10.22489/CinC.2020.227.
[102] P. F. Zhao et al., Electrical imaging of plant root zone: A review, Comput. Electron. Agric., vol. 167, no. June, p. 105058, 2019, doi: 10.1016/j.compag.2019.105058.
[103] S. Cardimona, Electrical Resistivity Techniques for Subsurface Investigation . Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, MO., Dep. Geol. Geophys. Univ. Missouri-Rolla, Roll. MO, no. 1976, pp. 11–0, 2002.
[104] M. H. Loke & R. D. Barker, Least-squares deconvolution of apparent resistivity pseudosections, Geophysics, vol. 60, no. 6, pp. 1682–1690, 1995, doi: 10.1190/1.1443900.
[105] M. H. Loke, H. Kiflu et al., Optimized arrays for 2D resistivity surveys with combined surface and buried arrays, Near Surf. Geophys., vol. 13, no. 5, pp. 505–517, 2015, doi: 10.3997/1873-0604.2015038.
[106] P. Stummer, H. Maurer, & A. G. Green, Experimental design: Electrical resistivity data sets that provide optimum subsurface information, Geophysics, vol. 69, no. 1, pp. 120–139, 2004, doi: 10.1190/1.1649381.
[107] W. Luo, Y. Li, R. Urtasun, & R. Zemel, Understanding the effective receptive field in deep convolutional neural networks, Adv. Neural Inf. Process. Syst., no. Nips, pp. 4905–4913, 2016.
[108] S. Maiti et al., ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India), J. Hydrol., vol. 464–465, pp. 294–308, 2012, doi: 10.1016/j.jhydrol.2012.07.020.
[109] P. Krähenbühl & V. Koltun, Efficient inference in fully connected crfs with Gaussian edge potentials, Adv. Neural Inf. Process. Syst. 24 25th Annu. Conf. Neural Inf. Process. Syst. 2011, NIPS 2011, pp. 1–9, 2011.
[110] G. Programming, D. E. Goldberg, & J. R. Koza, Adaptive Learning of Polynomial Networks. 2006.
[111] J. Giraud et al., Impact of uncertain geology in constrained geophysical inversion, ASEG Ext. Abstr., vol. 2018, no. 1, pp. 1–6, 2018, doi: 10.1071/aseg2018abm1_2f.
[112] S. Szalai, A. Novák, & L. Szarka, Depth of investigation and vertical resolution of surface geoelectric arrays, J. Environ. Eng. Geophys., vol. 14, no. 1, pp. 15–23, 2009, doi: 10.2113/JEEG14.1.15.
[113] S. Szalai & L. Szarka, Expanding the possibilities of two-dimensional multielectrode systems, with consideration to earlier geoelectric arrays, J. Appl. Geophys., vol. 75, no. 1, pp. 1–8, 2011, doi: 10.1016/j.jappgeo.2011.06.020.
[114] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, 2006, doi: 10.1016/j.patrec.2005.10.010.
[115] K. M. Ting, Confusion Matrix, Encycl. Mach. Learn. Data Min., no. October, pp. 260–260, 2017, doi: 10.1007/978-1-4899-7687-1_50.
[116] M. Studer et al., Discrepancy Analysis of State Sequences, Sociol. Methods Res., vol. 40, no. 3, pp. 471–510, 2011, doi: 10.1177/0049124111415372.
[117] V. Sofia, Confusion Matrix-based Feature Selection Sofia Visa, ConfusionMatrix-based Featur. Sel. Sofia, vol. 710, no. January, p. 8, 2011.
[118] I. Markoulidakis et al., “ulticlass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem, Technologies, vol. 9, no. 4, 2021, doi: 10.3390/technologies9040081.
[119] M. Grandini, E. Bagli, & G. Visani, Metrics for Multi-Class Classification: an Overview, pp. 1–17, 2020,
[120] D. Chicco & G. Jurman, The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics, vol. 21, no. 1, pp. 1–13, 2020, doi: 10.1186/s12864-019-6413-7.
[121] Y. Taigman, M. Yang, M. Ranzato, & L. Wolf, DeepFace: Closing the gap to human-level performance in face verification, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1701–1708, 2014, doi: 10.1109/CVPR.2014.220.
[122] M. O. Cimpoiaşu, O. Kuras, T. Pridmore,& S. J. Mooney, Potential of geoelectrical methods to monitor root zone processes and structure: A review, Geoderma, vol. 365, no. January, 2020, doi: 10.1016/j.geoderma.2020.114232.
[123] A. Furman, T. P. A. Ferre, & A. W. Warrick, Optimization of ERT Surveys for Monitoring Transient Hydrological Events Using Perturbation Sensitivity and Genetic Algorithms, Vadose Zo. J., vol. 3, no. 4, pp. 1230–1239, 2004, doi: 10.2113/3.4.1230.
[124] A. DEY & H. F. MORRISON, Resistivity Modelling for Arbitrarily Shaped Two‐Dimensional Structures, Geophysical Prospecting, vol. 27, no. 1. pp. 106–136, 1979, doi: 10.1111/j.1365-2478.1979.tb00961.x.
[125] M. Blome, H. Maurer, & S. Greenhalgh, Geoelectric experimental design - Efficient acquisition and exploitation of complete pole-bipole data sets, Geophysics, vol. 76, no. 1, 2011, doi: 10.1190/1.3511350.
[126] Advanced Geosciences (AGI), EarthImager 2D, no. 512, p. 139, 2009.
[127] Y. Y. . Al-najjar & D. C. . Soong, Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI, Int. J. Sci. Eng. Res., vol. 3, no. 8, pp. 1–5, 2012,
[128] S. Furui et al., Fundamental technologies in modern speech recognition, IEEE Signal Process. Mag., vol. 29, no. 6, pp. 16–17, 2012, doi: 10.1109/MSP.2012.2209906.
[129] R. Pires de Lima et al., Deep convolutional neural networks as a geological image classification tool, Sediment. Rec., vol. 17, no. 2, pp. 4–9, 2019, doi: 10.2110/sedred.2019.2.4.
[130] V. Sangeetha & K. J. R. Prasad, Syntheses of novel derivatives of 2-acetylfuro[2,3-a]carbazoles, benzo[1,2-b]-1,4-thiazepino[2,3-a]carbazoles and 1-acetyloxycarbazole-2- carbaldehydes, Indian J. Chem. - Sect. B Org. Med. Chem., vol. 45, no. 8, pp. 1951–1954, 2006, doi: 10.1002/chin.200650130.
[131] Q. Zhang, Q. Yuan, C. Zeng, X. Li, & Y. Wei, Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network, IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4274–4288, 2018, doi: 10.1109/TGRS.2018.2810208. |