參考文獻 |
Agnew, D.C., 1992. The time-domain behavior of power-law noises. Geophys. Res. Lett. 19, 333–336. https://doi.org/10.1029/91GL02832
Béon, M.L., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., Chen, C.-L., Fruneau, B., Baize, S., Ching, K.-E., Hu, J.-C., 2017. Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terr. Atmos. Ocean. Sci. 28, 663–681. https://doi.org/10.3319/TAO.2017.03.20.02
Bode, H.W., Shannon, C.E., 1950. A Simplified Derivation of Linear Least Square Smoothing and Prediction Theory. Proc. IRE 38, 417–425. https://doi.org/10.1109/JRPROC.1950.231821
Bos, M.S., Fernandes, R.M.S., Williams, S.D.P., Bastos, L., 2013. Fast error analysis of continuous GNSS observations with missing data. J Geod 87, 351–360. https://doi.org/10.1007/s00190-012-0605-0
Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2016. Time series analysis: forecasting and control, Fifth edition. ed, Wiley series in probability and statistics. John Wiley & Sons, Inc, Hoboken, New Jersey.
Ching, K.-E., Rau, R.-J., Lee, J.-C., Hu, J.-C., 2007. Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters 262, 601–619. https://doi.org/10.1016/j.epsl.2007.08.017
Davis, J.A., Greenhall, C.A., Stacey, P.W., 2005. A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise. Metrologia 42, 1–10. https://doi.org/10.1088/0026-1394/42/1/001
Davis, J.L., Wernicke, B.P., Tamisiea, M.E., 2012. On seasonal signals in geodetic time series. J. Geophys. Res. 117, 2011JB008690. https://doi.org/10.1029/2011JB008690
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39, 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
Didova, O., Gunter, B., Riva, R., Klees, R., Roese-Koerner, L., 2016. An approach for estimating time-variable rates from geodetic time series. J Geod 90, 1207–1221. https://doi.org/10.1007/s00190-016-0918-5
Dmitrieva, K., Segall, P., DeMets, C., 2015. Network-based estimation of time-dependent noise in GPS position time series. J Geod 89, 591–606. https://doi.org/10.1007/s00190-015-0801-9
Dong, D., Fang, P., Bock, Y., Cheng, M.K., Miyazaki, S., 2002. Anatomy of apparent seasonal variations from GPS-derived site position time series: SEASONAL VARIATIONS FROM GPS SITE TIME SERIES. J. Geophys. Res. 107, ETG 9-1-ETG 9-16. https://doi.org/10.1029/2001JB000573
Fukuda, J., Higuchi, T., Miyazaki, S., Kato, T., 2004. A new approach to time-dependent inversion of geodetic data using a Monte Carlo mixture Kalman filter. Geophysical Journal International 159, 17–39. https://doi.org/10.1111/j.1365-246X.2004.02383.x
Hines, T.T., Hetland, E.A., 2016. Rheologic constraints on the upper mantle from 5 years of postseismic deformation following the El Mayor‐Cucapah earthquake. JGR Solid Earth 121, 6809–6827. https://doi.org/10.1002/2016JB013114
Holmes, E.E., 2013. Derivation of an EM algorithm for constrained and unconstrained multivariate autoregressive state-space (MARSS) models.
Hosking, J.R.M., 1981. Fractional differencing. Biometrika 68, 165–176. https://doi.org/10.1093/biomet/68.1.165
Huang, M.-H., Tung, H., Fielding, E.J., Huang, H.-H., Liang, C., Huang, C., Hu, J.-C., 2016. Multiple fault slip triggered above the 2016 M w 6.4 MeiNong earthquake in Taiwan: Coseismic Slip Model of MeiNong Earthquake. Geophys. Res. Lett. 43, 7459–7467. https://doi.org/10.1002/2016GL069351
Ji, K.H., Herring, T.A., 2013. A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophysical Journal International 193, 171–186. https://doi.org/10.1093/gji/ggt003
Kailath, T., 1968. An innovations approach to least-squares estimation--Part I: Linear filtering in additive white noise. IEEE Trans. Automat. Contr. 13, 646–655. https://doi.org/10.1109/TAC.1968.1099025
Kalman, R.E., 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering 82, 35–45. https://doi.org/10.1115/1.3662552
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95 - International Conference on Neural Networks. Presented at the ICNN’95 - International Conference on Neural Networks, IEEE, Perth, WA, Australia, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by Simulated Annealing. Science 220, 671–680. https://doi.org/10.1126/science.220.4598.671
Klos, A., Bos, M.S., Bogusz, J., 2018. Detecting time-varying seasonal signal in GPS position time series with different noise levels. GPS Solut 22, 21. https://doi.org/10.1007/s10291-017-0686-6
Kolmogorov, A., 1941. Stationary sequences in Hilbert space. Bull. Math. Univ. Moscow 2.
Kolmogorov, A., 1939. Sur l’interpolation et extrapolation des suites stationnaires. Comptes Rendus de l’Académie des Sciences 208, 2043–2045.
Langbein, J., Johnson, H., 1997. Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res. 102, 591–603. https://doi.org/10.1029/96JB02945
Mai, H.A., Lee, J.-C., Chen, K.H., Wen, K.-L., 2021. Coulomb stress changes triggering surface pop-up during the 2016 Mw 6.4 Meinong earthquake with implications for earthquake-induced mud diapiring in SW Taiwan. Journal of Asian Earth Sciences 218, 104847. https://doi.org/10.1016/j.jseaes.2021.104847
Mao, A., Harrison, C.G.A., Dixon, T.H., 1999. Noise in GPS coordinate time series. J. Geophys. Res. 104, 2797–2816. https://doi.org/10.1029/1998JB900033
Ming, F., Yang, Y., Zeng, A., Zhao, B., 2019. Decomposition of geodetic time series: A combined simulated annealing algorithm and Kalman filter approach. Advances in Space Research 64, 1130–1147. https://doi.org/10.1016/j.asr.2019.05.049
Mohamed, A.H., Schwarz, K.P., 1999. Adaptive Kalman Filtering for INS/GPS. Journal of Geodesy 73, 193–203. https://doi.org/10.1007/s001900050236
Nikolaidis, R., 2002. Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. Thesis.
Rau, R.-J., Wen, Y.-Y., Ching, K.-E., Hsieh, M.-C., Lo, Y.-T., Chiu, C.-Y., Hashimoto, M., 2022. Origin of coseismic anelastic deformation during the 2016 Mw 6.4 Meinong Earthquake, Taiwan. Tectonophysics 836, 229428. https://doi.org/10.1016/j.tecto.2022.229428
Rauch, H.E., Tung, F., Striebel, C.T., 1965. Maximum likelihood estimates of linear dynamic systems. AIAA Journal 3, 1445–1450. https://doi.org/10.2514/3.3166
Sage, A.P., Husa, G.W., 1969. Adaptive Filtering with Unknown Prior Statistics. Proc. Joint Autom. Control Conf 760–769.
Segall, P., Matthews, M., 1997. Time dependent inversion of geodetic data. J. Geophys. Res. 102, 22391–22409. https://doi.org/10.1029/97JB01795
Shan, C., Zhou, W., Yang, Y., Jiang, Z., 2020. Multi-Fading Factor and Updated Monitoring Strategy Adaptive Kalman Filter-Based Variational Bayesian. Sensors 21, 198. https://doi.org/10.3390/s21010198
Shen, Z., Wang, M., Zeng, Y., Wang, F., 2015. Optimal Interpolation of Spatially Discretized Geodetic Data. Bulletin of the Seismological Society of America 105, 2117–2127. https://doi.org/10.1785/0120140247
Shen, Z.-K., Jackson, D.D., Ge, B.X., 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res. 101, 27957–27980. https://doi.org/10.1029/96JB02544
Shi, Y., Eberhart, R., 1998. A modified particle swarm optimizer, in: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Presented at the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, IEEE, Anchorage, AK, USA, pp. 69–73. https://doi.org/10.1109/ICEC.1998.699146
Shumway, R.H., Stoffer, D.S., 1982. AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM. J Time Series Analysis 3, 253–264. https://doi.org/10.1111/j.1467-9892.1982.tb00349.x
Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic robotics, Intelligent robotics and autonomous agents. MIT Press, Cambridge, Mass.
Wiener, N., Masani, P., 1957. The prediction theory of multivariate stochastic processes: I. The regularity condition. Acta Math. 98, 111–150. https://doi.org/10.1007/BF02404472
Williams, S.D.P., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res. 109, B03412. https://doi.org/10.1029/2003JB002741
Wold, H., 1938. A Study in The Analysis of Stationary Time Series.
Wornell, G.W., 1993. Wavelet-based representations for the 1/f family of fractal processes. Proc. IEEE 81, 1428–1450. https://doi.org/10.1109/5.241506
Zhi-Hui Zhan, Jun Zhang, Yun Li, Chung, H.S.-H., 2009. Adaptive Particle Swarm Optimization. IEEE Trans. Syst., Man, Cybern. B 39, 1362–1381. https://doi.org/10.1109/TSMCB.2009.2015956
李宥葭, 2017. 台灣G P S時間序列的雜訊分析. 國立中央大學, 桃園.
蔡佩京, 2018. Abnormally Large Postseismic Deformation Caused by Reactivated Mud Diapirism on the Accretionary Wedge: Constrained by the 2016 Meinong Earthquake (フェローシップ事業成果報告書). 公益財団法人日本台湾交流協会.
賴力嘉, 2023. 2016 年Mw 6.4 美濃地震觸發褶皺逆衝帶的淺層構造滑動所產生的反向變形. 國立成功大學. |