博碩士論文 110226069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:52.14.130.13
姓名 張宏瑋(Hung-Wei Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 長距離固態照明投射燈之橫向明視度之研究
(Study of Transverse Brightness of Long-Distance Solid-State Spot Light)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本研究探討長距離固態照明投射燈的橫向亮度。在此選用LED固態光源,因其具有節能、長壽命和高光效等優點,廣泛應用於室內和室外照明領域的光源。本研究首先對LED特性進行了分析。並通過模擬和優化,我們以中場擬和法製作其光源模型,並由此光源挑選出適合的光杯及透鏡製作遠距離投射燈,在此條件下單一光學模組以7.8W驅動下,照射角度之半高全寬為1.45°,投射距離可達 1,181 m ,整組投射燈採取4×4陣列方式排列,其照射角度之半高全寬為1.71°,投射距離可達 4.17 km,以25組投射燈達成投射距離20km。接下來,我們將投射燈以不同橫向數量排列及不同仰角進行記錄,並紀錄投射燈的灰階分布,並根據測量結果進行了數據分析和比較。實驗結果表明,在相同投射距離下,不同橫向擺放數量將會影響近距離視覺效果而遠距離則無差異。綜上所述,本研究的結果表現,通過改變投影燈的擺放,不會影響其遠距離的視覺對比度。而若將投射燈應用在燈塔方面與台灣光強度最強燈塔鵝鑾鼻燈塔比較,光強度為2.22倍,根據IALA 規範可以投射48海里。
摘要(英) This study explores the lateral luminance of long-distance solid-state lighting projectors. LED solid-state light sources were chosen for their advantages in energy efficiency, long lifespan, and high luminous efficacy, making them widely used in indoor and outdoor lighting applications. The characteristics of LEDs were initially analyzed. Through simulation and optimization, we constructed their light source model using the center field fitting method. Based on this model, suitable reflectors and lenses were chosen to create long-distance projection lamps. Under these conditions, a single optical module driven at 7.8W achieved a half-power beam width (HPBW) of 1.45° for the illumination angle, enabling a projection distance of up to 1,181 meters. By arranging the projection lamps in a 4x4 array, the HPBW of the illumination angle was 1.71°, resulting in a projection distance of 4.17 kilometers. A combination of 25 sets of projection lamps achieved a remarkable projection distance of 20 kilometers.
Subsequently, we recorded the arrangement of projection lamps with different lateral quantities and varying elevation angles. We also documented the grayscale distribution of the projection lamps. Data analysis and comparisons were performed based on the measurement results. The experimental outcomes revealed that, under the same projection distance, different lateral arrangements influenced the visual effect at close distances while showing no discernible difference at longer distances.
In conclusion, the results of this study demonstrate that altering the arrangement of projection lamps does not impact the visual contrast at long distances. Moreover, when applying projection lamps in lighthouse scenarios and comparing them with Taiwan′s most intense lighthouse, the Guishan Island Lighthouse, the light intensity was amplified by a factor of 2.22. Additionally, in accordance with IALA regulations, it can project up to 48 nautical miles.
關鍵字(中) ★ 中場擬和法
★ 投射燈
★ 投射距離
★ 光源模型
★ 燈塔
關鍵字(英) ★ pcW-LEDs
論文目次 摘要 I
Abstract II
誌謝 II
目錄 VI
圖目錄 IX
表目錄 XVII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 論文大綱 7
第二章 基礎原理 8
2-1 基本原理 8
2-1-1 反射定律 9
2-1-2 折射定律 10
2-2 光度學 11
2-2-1 視效函數 12
2-2-2 光度計量與單位 14
2-3 光展量 19
2-4 中場擬合法 22
第三章 光學設計與實踐 24
3-1 投射光形之照明指標 25
3-2 目標與初階光學設計 27
3-3 LED 光源特性分析與探討 29
3-4光源模型的建立 36
3-5 遠距離投射照明設計與結果 41
3-6 投射燈量測與分析 46
3-7 4×4陣列燈具驗證 54
3-8 20 km投射燈驗證 61
第四章 不同基數橫向排投射燈之明視度影響探討 68
4-1 實驗架構 69
4-2 近距離不同橫向投射燈數量與明視度關係 75
4-3 遠距離不同橫向投射燈數量與明視度關係 86
4-4 適用於港口燈塔分析 95
4-5 討論 97
第五章 結論 98
參考文獻 100
參考文獻 [1] “lighthouse,” https://uslhs.org/.
[2] R. Kane and H. Sell, Revolution in lamps: a chronicle of 50 years of progress. (The Fairmont Press, 2001).
[3] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers. (Springer, Heidelberg 1997).
[4] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US5998925 (1999).
[5] B. W. D′Andrade and S. R. Forrest, “White organic light‐emitting devices for solid‐state lighting,” Adv. Mater. 16, 1585-1595 (2004).
[6] A. N. PADMASALI and S. G. KINI, “Accelerated Testing Based Lifetime Performance Evaluation of LEDs in LED Luminaire Systems,” IEEE Access 9, 137140-137147 (2021).
[7] D. K. Singh, B. K.Roul, K. K. Nanda, and S. B. Krupanidhi, Light-Emitting Diodes and Photodetectors Advances and Future Directions. (BoD–Books, London 2021).
[8] C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, and Y. W. Yu, “Design of an LED Spot Light System with a Projection Distance of 10 km,” Crystals 9(10), 524 (2019).
[9] “LED投射燈,” http://www.mlux.com.tw/index.php?option=produ ct&lang=cht&task=
pageinfo&id=159&belongid=12&index=3.
[10] “LED投射燈,” https://www.escomaster.com.tw/light/productd.php?pd=21.
[11] “LED投射燈,” https://www.fengled.com/products/modelinfo_69. html.
[12] “HID投射燈,” http://www.clite.cn/cn/.
[13] “HID投射燈,” http://www.hdaudio.com. tw/edcontent.php?lang=tw&tb=1&id=30.
[14] “HID投射燈,” http://www.lishen glight.com.cn/ArticleShow. asp? ArticleID=23.
[15] H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590-595 (2002).
[16] R. A. Hicks, “Designing a mirror to realize a given projection,” J. Opt. Soc. Am. A 22, 323-330 (2005).
[17] L. L. Doskolovich and S. I. Kharitonov, “Calculating the surface shape of mirrors for shaping an image in the form of a line,” J. Opt. Technol. 72, 318-321 (2005).
[18] B. Parkyn and D. Pelka, “Free-form illumination lens designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 60-66 (2006).
[19] L. L. Doskolovich and M. A. Moiseev, “Calculations for refracting optical elements for forming directional patterns in the form of a rectangle,” J. Opt. Technol. 76, 430-434 (2009).
[20] J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49, 11-22 (2010).
[21] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295-5304 (2010).
[22] M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19, A225-A233 (2011).
[23] W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135-140 (1997).
[24] F. Fournier and J. Rolland, “Optimization of freeform lightpipes for light-emitting-diode projectors,” Appl. Optics 47, 957-966 (2008).
[25] J. C. Chaves, W. Falicoff, B. Parkyn, P. Benítez, and J. C. Miñano, “Increased brightness by light recirculation through an LED source,” Proc. SPIE 7059, 705902 (2008).
[26] H. J. Cornelissen, H. Ma, C. Ho, M. Li, and C. Mu, “Compact collimators for high brightness blue LEDs using dielectric multilayers,” Proc. SPIE 8123, 81230J (2011).
[27] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[28] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Opt. Express 15, 7572–7577 (2007).
[29] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918-13927 (2009).
[30] E. Hecht, Optics, 4th eds. (Addison Wesley, San Francisco, 2002).
[31] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics. (SPIE PRESS, Washington, 1998).
[32] P. K. Kaiser, CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86. (CIE, Canada, 1988).
[33] 孫慶成,光電科技概論,全華圖書公司。
[34] R. Winston, Nonimaging Optics. (Academic, SanDiego, Calif, 2005).
[35] R.Karlicek, C .C . Sun, G Zissis, and R. Ma, Handbook of advanced lighting technology. (Springer, Switzerland, 2017).
[36] H. Ries, N. Shatz, J. Bortz, and W. Spirkl, “Performance limitations of rotationally symmetric nonimaging devices,” J. Opt. Soc. Am. A 14, 2855-2862. (1997).
[37] Cree Inc, LED, https://www.cree-led.com/.
[38] Osram Inc, LED, https://www.osram.com/cb/.
[39] 蔡直佑,高光效多功能投射光形之研究,國立中央大學光電所博士論文,中華民國一百零四年。
[40] Flashlight Basic Performance Standard, Approved as an American National Standard. (ANSI, U. S. A., 2009).
[41] 陳觀宇,高光效多功能LED遠距離投射燈之研究,國立中央大學光電所碩士論文,中華民國一百零七年。
[42] “空氣品質監測網,” https://airtw.epa.gov.tw/CHT/EnvMonitoring/Central/
CentralMonitoring.aspx.
[43] “及時天氣看板,” http://140.115.35.54/index.php?option=com_sppagebuilder&view=
page&id=50&tmpl=instant&Itemid=712&lang=tw.
[44] IALA Aids to Navigation Manual NAVGUIDE. (Saint-Germain-en-Laye, France, AISM-IALA, 2023).
[45] 任永昌,發光二極體航標燈之研究,國立中央大學光電所碩士論文,中華民國一百零五年。
[46] “燈塔簡介,” https://www.motcmpb.gov.tw/Information/ Detail/3125d6a4-8313-4065-960f-0574776f60cb?SiteId=1&NodeId=495.
[47] “鵝鑾鼻燈塔,” https://lighthouse.motcmpb.gov.tw/lighthouse_3_20.html.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明