博碩士論文 111226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:13.58.147.207
姓名 林芯瑋(Sin-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 聚合物穩固電致變色液晶之光電特性及其應用
(Electro-optical characteristics of polymerstabilized electrochromatic liquid crystals and their applications)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 因電致變色元件具有低耗能、高對比度與可撓性強等特性,在顯示領域中受到廣泛的關注,本論文欲應用電致變色特性於液晶顯示元件中,故選用電致變色液晶SLC1717,其可與離子液體在直流電場下發生氧化還原反應,當SLC1717被氧化後會吸收綠光波段而在顯示元件中呈現洋紅色。本論文探討其著色態(氧化態)與離子液體[Bmim][NTf2]之濃度的相關性,並提出98 wt% SLC1717與2 wt% [Bmim][NTf2]混合為最佳濃度比,在SLC1717第一氧化態的吸收峰值波長518.4 nm下有最大穿透度變化量57.33%。在實驗過程中發現長施間施加直流電場或是久置液晶盒後,[Bmim][NTf2]會對SLC1717產生自發性垂直配向力,即使在基板鍍有水平配向膜下,依然會破壞液晶之水平排列,故嘗試以聚合物網絡結構穩固液晶之水平排列,並對其穩固效果作分析,在[Bmim][NTf2]濃度較高(2 wt%)的聚合物穩固電致變色液晶中,施加多次或是長時間的直流電場會使液晶盒呈現散射,推測是由垂直配向力與水平配向力同時作用下使液晶的排列形成多區域所造成。因此本論文降低聚合物穩固電致變色液晶中離子液體的濃度(0.5 wt%)以降低其自發性垂直配向力,而施加多次或是長時間的直流電場後,可由顯微影像與目視圖發現液晶盒不再呈現散射。最後本論文於聚合物穩固電致變色液晶中摻雜二色性染料AC1,根據賓主效應以交流電控制AC1之顏色深淺變化,另以直流電控制SLC1717氧化態的顏色深淺變化,可在一個元件中同時呈現電致變色特性與液晶之光電特性。
摘要(英) Electrochromic devices have attracted remarkable attention in the display field due to their low energy consumption, high contrast, and excellent flexibility. This thesis attempts to apply electrochromic characteristics to liquid crystal (LC) displays by using the electrochromic LC, SLC1717. In the presence of a direct current (DC) electric field, SLC1717 undergoes a redox reaction with the ionic liquid [Bmim][NTf2], and the color of SLC1717 will turn to magenta from colorless after its oxidation process. This study investigates the relation between the colored state (oxidized state) of SLC1717 and the concentration of the ionic liquid [Bmim][NTf2], and proposes the optimal concentration ratio is 98 wt% SLC1717 and 2 wt% [Bmim][NTf2], which possesses the maximum dynamic range of transmission (57.33%) at the wavelength of absorption peak (518.4 nm) with the application of a DC electric field. According to the experimental results about the electrochromic characteristics of SLC1717, it was observed that multiple or long-time applications of DC electric field cause [Bmim][NTf2] to provide SLC1717 with an anchoring of vertical alignment and thereby disrupt the homogeneous alignment of the LCs, indicating that the anchoring provided by the coated homogeneous alignment film is disrupted. To stabilize the homogeneous alignment of the adopted LCs, the polymer network structures were introduced and analyzed for their stabilization effect. In the polymer-stabilized electrochromic LCs with a higher concentration of [Bmim][NTf2] (2 wt%), multiple or long-time applications of DC electric field lead to scattering. The scattering drawback is speculated that the formation of multi-domains from the competition of vertical and homogeneous alignment anchoring. Therefore, we reduced the concentration of [Bmim][NTf2] in the polymer-stabilized electrochromic LCs to reduce the anchoring force from the spontaneous vertical alignment and thereby overcomed the scattering problem. The above results were also verified through polarized optical microscopy and photographs. Finally, we doped AC1 into the polymer-stabilized electrochromic LCs to evaluate the color changes by dichroic dyes and electrochromic LCs. According to the guest-host effect, the color change of AC1 can be controlled by using alternating current (AC) electric fields, while that of the oxidized state of SLC1717 can be controlled by using DC electric fields. This allows the device to simultaneously exhibit both the electrochromic characteristics and the electro-optical properties of LCs.
關鍵字(中) ★ 液晶
★ 二色性染料
關鍵字(英) ★ Liquid crystal
★ Dichroic dye
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xii
符號說明 xiii
第一章 緒論 1
1-1前言 1
1-2研究動機 1
1-3文獻回顧 2
1-4論文架構 6
第二章 液晶簡介 7
§ 2-1液晶簡史 7
§ 2-2液晶定義 7
§ 2-3液晶分類 8
§ 2-3-1盤狀液晶分子 8
§ 2-3-2棒狀液晶分子 9
§ 2-4液晶的光電特性 12
§ 2-4-1液晶的光學異向性 12
§ 2-4-2液晶的介電異向性 15
§ 2-4-3溫度對液晶的影響 17
§ 2-4-4液晶導軸的分布 17
三章 實驗相關理論 19
§ 3-1摩擦配向技術 19
§ 3-2變色材料 20
§ 3-2-1熱致變色原理 20
§ 3-2-2光致變色原理 21
§ 3-2-3電致變色原理 21
§ 3-3著色效率 23
§ 3-4二色性染料 24
§ 3-5 Beer–Lambert定律 25
§ 3-6賓主效應(Guest-Host Effect) 25
§ 3-7離子液體 27
§ 3-8聚合物網絡液晶 28
第四章 實驗方法與製程 29
§ 4-1材料特性 29
§ 4-1-1電致變色液晶SLC1717 29
§ 4-1-2離子液體[Bmim][NTf2] 29
§ 4-1-3二色性染料AC1 30
§ 4-1-4 向列型液晶單體RM257 30
§ 4-2液晶盒製程 31
§ 4-2-1材料配置 31
§ 4-2-2玻璃基板的清洗 32
§ 4-2-3玻璃基板的表面配向 32
§ 4-2-4液晶空盒製作 33
§ 4-2-5液晶樣品注入液晶空盒 33
§ 4-3實驗架設 33
§ 4-3-1液晶空盒之間隙量測 33
§ 4-3-2液晶樣品之穿透頻譜量測 35
§ 4-3-3液晶樣品之光電特性量測 35
§ 4-3-4偏光顯微鏡下之液晶樣品觀測 37
第五章 實驗結果與討論 38
§ 5-1電致變色液晶摻雜離子液體之穿透度探討 38
§ 5-1-1不同重量百分濃度之離子液體對穿透度之影響 39
§ 5-1-2聚合物穩固電致變色液晶之穿透度與散射度 45
§ 5-2聚合物穩固電致變色液晶摻雜二色性染料之光電特性量測 50
§ 5-2-1聚合物穩固電致變色液晶之著色態(氧化態) 50
§ 5-2-2聚合物穩固電致變色液晶摻雜AC1之光電特性量測 57
§ 5-2-3聚合物穩固電致變色液晶摻雜AC1之混色效果 60
第六章 結論 68
§ 6-1結論 68
§ 6-1-1電致變色液晶SLC1717之材料特性與探究 68
§ 6-1-2聚合物網絡結構與離子液體之配向力 69
§ 6-1-3聚合物穩固電致變色液晶摻雜AC1之混色結果 70
§ 6-2未來展望 72
參考文獻 74
參考文獻 [1] Y. Wang, S. Wang, X. Wang, W. Zhang, W. Zheng, Y.-M. Zhang and, S.-X. Zhang, “A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer,” Nat Mater. 18, 1335-1342 (2019).
[2] K. Nakamura, S. Kaneko, Y. Ito, H. Hirabayashi, and K. Ogura, “Electrochemically induced coloration of liquid crystal materials,” J. Appl. Phys. 53, 1792-1796 (1982).
[3] F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84, 4260-4262 (2004).
[4] Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq Cryst. 43, 1110-1119 (2016).
[5] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[6] O. Lehmann, “Über fliessende Krystalle,” Z. Phys. Chem. 4, 462-472 (1889).
[7] S. Chandrasekhar, “Recent developments in the physics of liquid crystals,” Contemp. Phys. 29, 527 (1988).
[8] S. Chandrasekhar, B.K Sadashiva, and K.A. Suresh, “Liquid crystals of disc-like molecules,” Pramana - J Phys. 9, 471-480 (1977).
[9] E.G. Virga, “Variational Theories for Liquid Crystals (1st ed.),” Chapman and Hall/CRC (1994).
[10] H. Kitzerow, and C. Bahr, “Chirality in liquid crystals,” Springer (2001).
[11] P. J. Collings, and M. Hird, “Introduction to liquid crystals chemistry and physics,” Taylor & Francis Ltd. (1997).
[12] A. Yariv, P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley Series in Pure and Applied Optics (2002).
[13] 松本正一‧角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版(2003).
[14] I.-C. Khoo, and S.-T. Wu, “Optics and nonlinear optics of liquid crystals,” World Scientific (1993).
[15] D.-K. Yang, and S.-T. Wu, “Fundamentals of Liquid Crystal Devices,” Wiley Online Library (2014).
[16] D. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
[17] S. Oka, T. Mitsumoto, M. Kimura, and T. Akahane, “Relationship between surface order and surface azimuthal anchoring strength of nematic liquid crystals,” Phys. Rev. E. 69, 061711 (2004).
[18] H. Mattila, “Intelligent Textiles and Clothing,” Woodhead Publishing Series in Textiles (2006).
[19] Y. Hirshberg and E. Fischer., “Photochromism and reversible multiple internal transitions in some spiropyrans at low temperatures. Part I,” J. Chem. Soc., 297–303 (1954).
[20] C. Gu, A.-B. Jia, Y.-M. Zhang, and S.-X. Zhang, “Emerging Electrochromic Materials and Devices for Future Displays,” Chem Rev. 122, 14679-14721 (2022).
[21] W. Zhang, X. Wang, Y. Wang, “Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader,” Nat. Commun. 10, 1559-1567 (2019).
[22] M. Fabretto, T. Vaithianathan, C. Hall, P. Murphy, P. C. Innis, J. Mazurkiewicz, and G.G. Wallace, “Colouration efficiency measurements in electrochromic polymers: The importance of charge density,” Electrochem. Commun. 9, 2032-2036 (2007).
[23] D. Swinehart, “The beer-lambert law,” J. Chem. Educ. 39, 333 (1962).
[24] G. H. Heilmeier, J. A. Castellano, and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. 8, 293-304 (1969).
[25] Y. Marcus, “Ionic Liquid Properties From Molten Salts to RTILs,” Springer (2016).
[26] P.-Y. Chen, “The Developments of Ionic Liquids and Their Applications in Electrochemistry and other Fields-The Unique Solvents,” Chem. 64, 235-259 (2006).
[27] I. Dierking, “Polymer Network–Stabilized Liquid Crystals,” Adv. Mater. 12, 167-181 (2000).
[28] D. Liu, and D. J. Broer, “Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment,” Langmuir. 30, 13499-13509 (2014).
[29] I. Son, B. Lee, C. Kim, J.-H. Kim, J.-Y. Yoo, and J.-H. Lee, “In situ self-assembled homeotropic alignment layer for fast-switching liquid crystal devices,” Liq Cryst. 43, 517-523 (2016).
[30] Y. Zhan, H. Lu, M.-L. Jin & G.-F. Zhou, “Electrohydrodynamic instabilities for smart window applications,” Liq. Cryst. 47, 977-983 (2020)
[31] Y. Cui, R. Zola, Y.-C. Yang, and D.-K. Yang, “Alignment layers with variable anchoring strengths from Polyvinyl Alcohol,” J. Appl. Phys. 111, 063520 (2012).
[32] P. Selvaraj, P.-Y. Li, M. Antony, Y.-W. Wang, J.-P. Chou, Z.-H. Chen, C.-J. Hsu, and Chi-Yen Huang, "Rubbing-free liquid crystal electro-optic device based on organic single-crystal rubrene," Opt. Express 30, 9521-9533 (2022).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明