參考文獻 |
1. Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable energy future. nature, 2012. 488(7411): p. 294-303.
2. Sharma, S. and S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications. Renewable and sustainable energy reviews, 2015. 43: p. 1151-1158.
3. Klahr, B., S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T.W. Hamann, Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co–Pi”-coated hematite electrodes. Journal of the American Chemical Society, 2012. 134(40): p. 16693-16700.
4. Khan, M.A., H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, and J. Zhang, Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews, 2018. 1: p. 483-530.
5. Ball, M. and M. Wietschel, The future of hydrogen–opportunities and challenges. International journal of hydrogen energy, 2009. 34(2): p. 615-627.
6. Davis, S.J., N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, and Y.-M. Chiang, Net-zero emissions energy systems. Science, 2018. 360(6396): p. eaas9793.
7. Hordeski, M.F., Alternative fuels: the future of hydrogen. 2020: River Publishers.
8. Kanan, M.W. and D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008. 321(5892): p. 1072-1075.
9. Landon, J., E. Demeter, N. Inoglu, C. Keturakis, I.E. Wachs, R. Vasic, A.I. Frenkel, and J.R. Kitchin, Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Acs Catalysis, 2012. 2(8): p. 1793-1801.
10. Suen, N.-T., S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
11. Jamesh, M.-I. and X. Sun, Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting–A review. Journal of Power Sources, 2018. 400: p. 31-68.
12. Vij, V., S. Sultan, A.M. Harzandi, A. Meena, J.N. Tiwari, W.-G. Lee, T. Yoon, and K.S. Kim, Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Acs Catalysis, 2017. 7(10): p. 7196-7225.
13. Wang, J., X. Ge, Z. Liu, L. Thia, Y. Yan, W. Xiao, and X. Wang, Heterogeneous electrocatalyst with molecular cobalt ions serving as the center of active sites. Journal of the American Chemical Society, 2017. 139(5): p. 1878-1884.
14. Han, X., C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, and J. Qiu, Ultrasensitive iron‐triggered nanosized Fe–CoOOH integrated with graphene for highly efficient oxygen evolution. Advanced Energy Materials, 2017. 7(14): p. 1602148.
15. Kubisztal, J. and A. Budniok, Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. International journal of hydrogen energy, 2008. 33(17): p. 4488-4494.
16. Li, X., F.C. Walsh, and D. Pletcher, Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Physical Chemistry Chemical Physics, 2011. 13(3): p. 1162-1167.
17. 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, in 應用材料科學國際研究生碩士學位學程. 2020, 國立中央大學: 桃園縣. p. 75.
18. 謝東佑, 自焦磷酸浴中以微陽極導引電鍍製備鎳-鎢合金微柱、微螺旋及其在1.0 M KOH 中電解產氫特性研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 223.
19. 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, in 材料科學與工程研究所. 2022, 國立中央大學: 桃園縣. p. 170.
20. 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 161.
21. 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 177.
22. 曾耀田, 李昱, 林景崎, 黃衍任, 鄭憲清, and 曹譯友, 鎳鐵合金微柱(Ni41Fe59, Ni55Fe45, Ni71Fe29 及 Ni86Fe14) 之製作及及 其在1 M KOH及 0.5 M NaCl 混合溶液中之電化學行為. Journal of Chinese Corrosion Engineering, 2021. 35(2): p. 8-16.
23. Xia, C., Q. Jiang, C. Zhao, M.N. Hedhili, and H.N. Alshareef, Selenide‐based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, 2016. 28(1): p. 77-85.
24. Sun, H., Z. Yan, F. Liu, W. Xu, F. Cheng, and J. Chen, Self‐supported transition‐metal‐based electrocatalysts for hydrogen and oxygen evolution. Advanced materials, 2020. 32(3): p. 1806326.
25. Ye, R., P. del Angel‐Vicente, Y. Liu, M.J. Arellano‐Jimenez, Z. Peng, T. Wang, Y. Li, B.I. Yakobson, S.H. Wei, and M.J. Yacaman, High‐performance hydrogen evolution from MoS2 (1–x) P x solid solution. Advanced Materials, 2016. 28(7): p. 1427-1432.
26. Katsounaros, I., S. Cherevko, A.R. Zeradjanin, and K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angewandte Chemie International Edition, 2014. 53(1): p. 102-121.
27. Sun, H., X. Xu, Z. Yan, X. Chen, L. Jiao, F. Cheng, and J. Chen, Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(44): p. 22062-22069.
28. Bard, A., Standard potentials in aqueous solution. 2017: Routledge.
29. McCafferty, E., Standard electrode potentials of the elements as a fundamental periodic property of atomic number. Electrochimica acta, 2007. 52(19): p. 5884-5890.
30. Brenner, A., Electrodeposition of alloys: principles and practice. 2013: Elsevier.
31. Santos, H.L., P.G. Corradini, M. Medina, J.A. Dias, and L.H. Mascaro, NiMo–NiCu inexpensive composite with high activity for hydrogen evolution reaction. ACS applied materials & interfaces, 2020. 12(15): p. 17492-17501.
32. Mansouri, N., N. Benbrahim-Cherief, E. Chainet, F. Charlot, T. Encinas, S. Boudinar, B. Benfedda, L. Hamadou, and A. Kadri, Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties. Journal of Magnetism and Magnetic Materials, 2020. 493: p. 165746.
33. Roventi, G., R. Cecchini, A. Fabrizi, and T. Bellezze, Electrodeposition of nickel–zinc alloy coatings with high nickel content. Surface and Coatings Technology, 2015. 276: p. 1-7.
34. Zhuang, Y. and E. Podlaha, NiCoFe ternary alloy deposition: I. an experimental kinetic study. Journal of the Electrochemical Society, 2000. 147(6): p. 2231.
35. Gileadi, E. and N. Eliaz, The mechanism of induced codeposition of Ni-W alloys. ECS Transactions, 2007. 2(6): p. 337.
36. Podlaha, E. and D. Landolt, Induced codeposition: I. An experimental investigation of Ni‐Mo alloys. Journal of the Electrochemical Society, 1996. 143(3): p. 885.
37. Sun, S., T. Bairachna, and E. Podlaha, Induced codeposition behavior of electrodeposited NiMoW alloys. Journal of the Electrochemical Society, 2013. 160(10): p. D434.
38. Madden, J.D. and I.W. Hunter, Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 1996. 5(1): p. 24-32.
39. El-Giar, E. and D. Thomson. Localized electrochemical plating of interconnectors for microelectronics. in IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. 1997. IEEE.
40. Yeo, S. and J. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition. Journal of micromechanics and microengineering, 2001. 11(5): p. 435.
41. Yeo, S., J. Choo, and K. Sim, On the effects of ultrasonic vibrations on localized electrochemical deposition. Journal of micromechanics and microengineering, 2002. 12(3): p. 271.
42. Said, R., Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling. Nanotechnology, 2003. 14(5): p. 523.
43. Seol, S., J. Yi, X. Jin, C. Kim, J. Je, W. Tsai, P. Hsu, Y. Hwu, C. Chen, and L. Chang, Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. electrochemical and solid-state letters, 2004. 7(9): p. C95.
44. Seol, S.K., A.R. Pyun, Y. Hwu, G. Margaritondo, and J.H. Je, Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography. Advanced Functional Materials, 2005. 15(6): p. 934-937.
45. Seol, S., J. Kim, J. Je, Y. Hwu, and G. Margaritondo, Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochemical and solid-state letters, 2007. 10(5): p. C44.
46. Lin, C., C. Lee, J. Yang, and Y. Huang, Improved copper microcolumn fabricated by localized electrochemical deposition. electrochemical and solid-state letters, 2005. 8(9): p. C125.
47. Lee, C.-Y., C.-S. Lin, and B.-R. Lin, Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 105008.
48. Pané, S., V. Panagiotopoulou, S. Fusco, E. Pellicer, J. Sort, D. Mochnacki, K.M. Sivaraman, B. Kratochvil, M. Baró, and B.J. Nelson, The effect of saccharine on the localized electrochemical deposition of Cu-rich Cu–Ni microcolumns. Electrochemistry communications, 2011. 13(9): p. 973-976.
49. Brant, A.M., M.M. Sundaram, and A.B. Kamaraj, Finite element simulation of localized electrochemical deposition for maskless electrochemical additive manufacturing. Journal of Manufacturing Science and Engineering, 2015. 137(1).
50. Wang, F., F. Wang, and H. He, Parametric electrochemical deposition of controllable morphology of copper micro-columns. Journal of The Electrochemical Society, 2016. 163(10): p. E322.
51. Wang, F., H. Xiao, and H. He, Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Scientific reports, 2016. 6(1): p. 26270.
52. Wang, F., H. Bian, and Y. Xiao, Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode. ECS Journal of Solid State Science and Technology, 2019. 8(4): p. P223.
53. Wang, F., B. Hua, and Q. Niu, Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode. Journal of Solid State Electrochemistry, 2022. 26(3): p. 799-808.
54. 陳承志, 銅基材上之單軸微電析鎳製程研究, in 機械工程研究所. 1999, 國立中央大學: 桃園縣. p. 158.
55. 游絢博, 陽極單軸間歇運動下之直流、脈衝微電析鎳, in 機械工程研究所. 2000, 國立中央大學: 桃園縣. p. 177.
56. 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, in 機械工程研究所. 2004, 國立中央大學: 桃園縣. p. 168.
57. 游睿為, 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析, in 機械工程研究所. 2001, 國立中央大學: 桃園縣. p. 202.
58. 葉柏青, 微陽極引導電鍍與監測, in 機械工程研究所. 2003, 國立中央大學: 桃園縣. p. 147.
59. 賴格源, 微陽極導引電鍍銅其組織及底部覆蓋範圍之探討, in 機械工程研究所. 2006, 國立中央大學: 桃園縣. p. 157.
60. Lin, J., S. Jang, D. Lee, C. Chen, P. Yeh, T. Chang, and J. Yang, Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. Journal of Micromechanics and Microengineering, 2005. 15(12): p. 2405.
61. Lin, J., T. Chang, J. Yang, J. Jeng, D. Lee, and S. Jiang, Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. Journal of Micromechanics and Microengineering, 2008. 19(1): p. 015030.
62. Chang, T., J. Lin, J. Yang, P. Yeh, D. Lee, and S. Jiang, Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2336.
63. 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, in 機械工程研究所. 2005, 國立中央大學: 桃園縣. p. 151.
64. 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, in 機械工程研究所. 2009, 國立中央大學: 桃園縣. p. 107.
65. Ciou, Y.-J., Y.-R. Hwang, and J.-C. Lin, Fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing. ECS Journal of Solid State Science and Technology, 2014. 3(7): p. P268.
66. 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, in 機械工程學系. 2015, 國立中央大學: 桃園縣. p. 97.
67. 張翔, 銅鎳合金微結構之微電鍍研究, in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 112.
68. 劉謹綸, 以微電鍍法製備三維銅錫介金屬化合物微結構, in 材料科學與工程研究所. 2018, 國立中央大學: 桃園縣. p. 120.
69. 李昱, 以微電鍍法製備鎳鐵合金三維微結構之研究, in 機械工程學系. 2018, 國立中央大學: 桃園縣. p. 121.
70. 吳冠勳, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, in 機械工程學系. 2019, 國立中央大學: 桃園縣. p. 101.
71. Tseng, Y.-T., G.-X. Wu, J.-C. Lin, Y.-R. Hwang, D.-H. Wei, S.-Y. Chang, and K.-C. Peng, Preparation of Co-Fe-Ni alloy micropillar by microanode-guided electroplating. Journal of Alloys and Compounds, 2021. 885: p. 160873.
72. 許壬瀚, 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質, in 材料科學與工程研究所. 2021, 國立中央大學: 桃園縣. p. 145.
73. 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, in 材料科學與工程研究所. 2020, 國立中央大學: 桃園縣. p. 150.
74. Liu, K., M. Ostadhassan, and B. Bubach, Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. Journal of Natural Gas Science and Engineering, 2016. 35: p. 1310-1319.
75. Kiely, E., R. Zwane, R. Fox, A.M. Reilly, and S. Guerin, Density functional theory predictions of the mechanical properties of crystalline materials. CrystEngComm, 2021. 23(34): p. 5697-5710.
76. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583.
77. Song, J., C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, and Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020. 49(7): p. 2196-2214.
78. Wang, S., A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021. 8: p. 1-23.
79. Li, J., Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Letters, 2022. 14(1): p. 112.
80. Wang, X., S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y.-W. Zhang, Z. Wang, and H. Wang, Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature, 2022: p. 1-7.
81. Li, Z., B. Li, M. Yu, C. Yu, and P. Shen, Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. International Journal of Hydrogen Energy, 2022.
82. Man, I.C., H.Y. Su, F. Calle‐Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, and J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
83. Seh, Z.W., J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
84. Kim, J.S., B. Kim, H. Kim, and K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018. 8(11): p. 1702774.
85. Bockris, J.O.M. and T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. Journal of The Electrochemical Society, 1984. 131(2): p. 290.
86. Goh, K.-H., T.-T. Lim, and Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review. Water research, 2008. 42(6-7): p. 1343-1368.
87. Trotochaud, L., S.L. Young, J.K. Ranney, and S.W. Boettcher, Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014. 136(18): p. 6744-6753.
88. Bates, M.K., Q. Jia, H. Doan, W. Liang, and S. Mukerjee, Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catalysis, 2016. 6(1): p. 155-161.
89. Yang, Y., L. Dang, M.J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R.J. Hamers, and S. Jin, Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018. 8(15): p. 1703189.
90. Cao, Y., W. Li, H. Guo, M. Yue, and Y. Wang, Surface synergistic effect of sub-2 nm NiFeCr hydroxide nanodots yielding high oxygen evolution mass activities. Chemical Engineering Journal, 2023. 461: p. 141917.
91. Wang, Z., W. Liu, Y. Hu, M. Guan, L. Xu, H. Li, J. Bao, and H. Li, Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Applied Catalysis B: Environmental, 2020. 272: p. 118959.
92. Chen, Z.J., T. Zhang, X.Y. Gao, Y.J. Huang, X.H. Qin, Y.F. Wang, K. Zhao, X. Peng, C. Zhang, and L. Liu, Engineering microdomains of oxides in high‐entropy alloy electrodes toward efficient oxygen evolution. Advanced Materials, 2021. 33(33): p. 2101845.
93. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. 2019: John Wiley & Sons.
94. Han, L., S. Dong, and E. Wang, Transition‐metal (Co, Ni, and Fe)‐based electrocatalysts for the water oxidation reaction. Advanced materials, 2016. 28(42): p. 9266-9291.
95. Ledwig, P., M. Kac, A. Kopia, J. Falkus, and B. Dubiel, Microstructure and properties of electrodeposited nanocrystalline Ni-Co-Fe coatings. Materials, 2021. 14(14): p. 3886.
96. Biswal, A., P.K. Panda, A.N. Acharya, B.C. Tripathy, F. Alenazey, Z.-T. Jiang, and M.M. Sundaram, Tuning the morphology and redox behaviour by varying the concentration of Fe in a CoNiFe ternary oxide heterostructure for hybrid devices. New Journal of Chemistry, 2020. 44(23): p. 9921-9932.
97. Yang, Y., Preparation of Fe-Co-Ni ternary alloys with electrodeposition. Int. J. Electrochem. Sci, 2015. 10(6): p. 5164-5175.
98. Zhang, H., L. Liu, J. Bai, and X. Liu, Corrosion behavior and microstructure of electrodeposited nano-layered Ni–Cr coatings. Thin Solid Films, 2015. 595: p. 36-40.
99. Aghdam, A.S., S. Allahkaram, and S. Mahdavi, Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath. Surface and Coatings Technology, 2015. 281: p. 144-149.
100.Liu, Q., H. Zhang, J. Xu, L. Wei, Q. Liu, and X. Kong, Facile preparation of amorphous Fe–Co–Ni hydroxide arrays: A highly efficient integrated electrode for water oxidation. Inorganic Chemistry, 2018. 57(24): p. 15610-15617.
101.Zhang, T., Y.-L. Meng, Y.-H. Zhao, J.-C. Ni, Y. Pan, Y. Dai, Z. Tan, X.-F. Wang, and X.-Z. Song, Boosting the oxygen evolution electrocatalysis of high-entropy hydroxides by high-valence nickel species regulation. Chemical Communications, 2022. 58(55): p. 7682-7685.
102.Jin, K., Y. Gao, and H. Bei, Intrinsic properties and strengthening mechanism of monocrystalline Ni-containing ternary concentrated solid solutions. Materials Science and Engineering: A, 2017. 695: p. 74-79.
103.Xia, Y., H. Bei, Y. Gao, D. Catoor, and E.P. George, Synthesis, characterization, and nanoindentation response of single crystal Fe–Cr–Ni alloys with FCC and BCC structures. Materials Science and Engineering: A, 2014. 611: p. 177-187.
104.WebElements. Atomic radius (empirical) and Young′s modulus. [cited 2023 June]; Available from: https://www.webelements.com/.
105.Wu, Z., H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014. 81: p. 428-441.
106.程憲威, 以微電鍍法製備鎳鉬合金微柱並探討其在1.0 M KOH溶液中電解產氫之性能, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 206.
107.賴威全, 硫脲及其衍生物添加對微陽極導引電鍍法製備銅微柱之結構及特性影響研究, in 機械工程學系. 2022, 國立中央大學: 桃園縣. p. 128.
108.Audichon, T., T.W. Napporn, C. Canaff, C.u. Morais, C.m. Comminges, and K.B. Kokoh, IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. The Journal of Physical Chemistry C, 2016. 120(5): p. 2562-2573.
109.Tung, C.-W., Y.-Y. Hsu, Y.-P. Shen, Y. Zheng, T.-S. Chan, H.-S. Sheu, Y.-C. Cheng, and H.M. Chen, Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature communications, 2015. 6(1): p. 8106.
110. Yang, Y., X. Cui, D. Gao, H. He, Y. Ou, M. Zhou, Q. Lai, X. Wei, P. Xiao, and Y. Zhang, Trimetallic CoFeCr hydroxide electrocatalysts synthesized at a low temperature for accelerating water oxidation via tuning the electronic structure of active sites. Sustainable Energy & Fuels, 2020. 4(7): p. 3647-3653.
111. Li, M., Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Facile synthesis of electrospun MFe 2 O 4 (M= Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-8930.
112. WebElements. Abundance in Earth′s crust (by weight). [cited 2023 June]; Available from: https://www.webelements.com/. |