博碩士論文 109226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.42.94
姓名 余佳旻(Jia-Min Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 量子點發光二極體和垂直發光電晶體之開發
(Development of Quantum Dot Light-Emitting Diode and Vertical Light-Emitting Transistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-15以後開放)
摘要(中) 本論文首先研究量子點發光二極體 (Quantum Dot Light-Emitting Diode,QLED) ,透過材料調變和厚度設計,平衡電子和電洞流的復合以實現高效率發光,並研究QLED在垂直發光電晶體 (Vertical Light-Emitting Transistor,VLET) 的應用。
在優化QLED的研究中,組合(1) 三氧化鉬 (MoO3)、(2) 聚[N,N′-雙(4-丁基苯基)-N,N′-雙(苯基)-聯苯胺] (Poly-TPD)、(3) 聚(9-乙烯基咔唑) (PVK),達到電洞層注入效果,以及利用不同混合比例的乙醯丙酮鋅 (Zn(acac)2‧xH2O) 與聚乙烯亞胺 (PEI) 形成電子注入層,實現QLED的優化。結果顯示,透過PEI優化的電子注入層,QLED外部量子效率 (External Quantum Efficiency,EQE) 可由0.025%提升100倍以上達到2.56%。進一步比較單載子電子元件特性,可確定電子相較於電洞易注入到量子點 (Quantum Dot,QD),但電子會侷限在QD或PVK之介面,使電洞流主導QLED的電流和發光。混合PEI造成效率提升可歸因於有效降低電子注入層導電度及有效阻擋電洞流,改善電子和電洞流的平衡和復合發光。此外,亦能幫助電子注入至PVK處形成激子,再通過螢光共振能量轉移 (Fluorescence Resonance Energy Transfer,FRET) QD內部進行復合發光。
最後,將QLED與氧化鋅 (ZnO) 電晶體整合製作成VLET,此電晶體架構透過PEI調變電子注入層也能有效控制電子流由下方ZnO 電晶體注入至上方的QLED。優化的VLET元件相較於QLED元件具有更高的EQE,可達到3.04%,同時具有高亮度、高開/關比、微型化元件面積和降低功耗的優點,可實現微型顯示器和照明應用。
摘要(英) In the paper, the Quantum Dot Light-Emitting Diodes (QLEDs) were optimized by designing materials and layer thicknesses to balance the electron- hole recombination to achieve high emission efficiency. The QLED were then applied to develop the Vertical Light-Emitting Transistors (VLETs).
In the research of optimizing QLED, the Molybdenum trioxide (MoO3), Poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzidine] (Poly-TPD), and Poly(9-vinylcarbazole) (PVK) were used to achieve the effective injection and transport of the holes. Also, different weight ratios of Zinc acetylacetonate hydrate (Zn(acac)2‧xH2O) and Polyetherimide (PEI) were blended to modify electron injection layer. The experimental results show that with the PEI-optimized electron injection layer, the external quantum efficiency (EQE) of QLED can be increased by a factor of 100% from 0.025% to 2.56%. Further comparing the characteristics of the electron-only device, it can be determined that electrons are easier to inject into the Quantum Dot (QD) than holes. However, the electrons are mainly confined in the QD or at the PVK interface, so that the hole current dominates the current and emission of the QLED. The enhanced efficiency caused by the blend PEI could be attributed to effectively reducing the conductivity of the electron injection layer and effectively blocking the hole current, which improves the balance of the electron and hole current for recombination . In addition, PEI also facilitates the electron injection into the PVK to form the excitons, then undergoing Fluorescence Resonance Energy Transfer (FRET) to emit light from QD.
Eventually, the QLED was integrated with the ZnO transistor to complete VLET. Blending PEI in the electron injection layer is effective to control injection of electron current form the bottom ZnO transistor to the top QLED. The optimized VLET shows the EQE of up to 3.04%, even higher than the QLED. It also has the advantages of high brightness, high on/off current ratio, the miniaturized area, and reduced power consumption, which enables miniaturized displays and lighting applications.
關鍵字(中) ★ 量子點
★ 發光二極體
★ 垂直發光電晶體
★ 調製電子注入層
★ 聚乙烯亞胺
關鍵字(英) ★ Quantum Dot
★ Light-Emitting Diode
★ Vertical Light-Emitting Transistor
★ modify electron injection layer
★ Polyetherimide
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 奈米材料 2
1-3 量子點發光二極體 3
1-4 場效電晶體 5
1-5 垂直式電晶體 6
1-6 研究目的與動機 11
第二章 基礎原理 12
2-1 奈米材料之效應 12
2-1-1 量子侷限效應(Quantum Confinement Effect) 12
2-1-2 量子穿隧效應(Quantum Tunneling Effect) 12
2-1-3 表面效應(Surface Effect) 13
2-1-4 尺寸效應(Size-dependent Effect) 13
2-2 發光二極體之工作原理 14
2-2-1 量子點發光二極體架構與理論 14
2-2-2 螢光共振能量轉移 18
2-2-3 外部量子效率 19
2-3 垂直式電晶體之工作原理 20
2-3-1 垂直電晶體架構與理論 20
2-3-2 轉換特性曲線與開/關電流比 25
第三章 實驗方法與架構 26
3-1 實驗材料 26
3-1-1 介電層材料介紹 28
3-1-2 半導體層材料介紹 30
3-1-3 發光層材料介紹 31
3-2 實驗儀器 32
3-2-1 手套箱 (Glove Box) 32
3-2-2 熱蒸鍍機 (Thermal Evaporation Coater) 33
3-2-3 原子層沉積 (Atomic Layer Deposition, ALD) 34
3-2-4 手動光罩接合對準器 (Mask and Bond Aligner) 35
3-2-5 紫外光臭氧清洗機 (UV-Ozone) 36
3-2-6 旋轉塗佈機 (Spin Coater) 37
3-2-7 半導體元件參數分析儀 (Semiconductor Device Parameter Analyzer, SPA) 38
3-2-8 LF阻抗分析儀 (LF Impedance Analyzer) 39
3-2-9 光電二極體 (Photodiode) 40
3-2-10 光纖量測系統 41
3-3 實驗方法與製程 42
3-3-1 量子點發光二極體製程 42
3-3-2 單載子電子元件(Electron-only)製程 45
3-3-3 垂直發光電晶體製程 46
第四章 結果與討論 50
4-1 量子點發光二極體 50
4-1-1 優化電洞注入層 50
4-1-2 優化電洞傳輸層 51
4-1-3 優化電子注入層 52
4-2 單載子電子元件量測 54
4-3 垂直發光電晶體開發 57
第五章 結論與未來展望 62
參考文獻 63
參考文獻 [1] X. Liu et al., "High Efficiency Light‐Emitting Transistor with Vertical Metal–Oxide Heterostructure," Small, vol. 14, no. 22, p. 1800265, 2018.
[2] V. Pokropivny and V. Skorokhod, "Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science," Materials Science and Engineering: C, vol. 27, no. 5-8, pp. 990-993, 2007.
[3] A. B. Asha and R. Narain, "Nanomaterials properties," in Polymer science and nanotechnology: Elsevier, 2020, pp. 343-359.
[4] Q. Sun et al., "Bright, multicoloured light-emitting diodes based on quantum dots," Nature photonics, vol. 1, no. 12, pp. 717-722, 2007.
[5] S. Jun, E. Jang, J. Park, and J. Kim, "Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices," Langmuir, vol. 22, no. 6, pp. 2407-2410, 2006.
[6] G. J. Supran et al., "QLEDs for displays and solid-state lighting," MRS bulletin, vol. 38, no. 9, pp. 703-711, 2013.
[7] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," Journal of Applied Physics, vol. 90, no. 10, pp. 5048-5051, 2001.
[8] M. Baldo, S. Lamansky, P. Burrows, M. Thompson, and S. Forrest, "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Applied Physics Letters, vol. 75, no. 1, pp. 4-6, 1999.
[9] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, pp. 151-154, 1998.
[10] Y. Yang et al., "High-efficiency light-emitting devices based on quantum dots with tailored nanostructures," Nature Photonics, vol. 9, no. 4, pp. 259-266, 2015.
[11] Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, "Highly efficient and fully solution-processed inverted light-emitting diodes with charge control interlayers," ACS applied materials & interfaces, vol. 10, no. 20, pp. 17295-17300, 2018.
[12] A. J. Ben‐Sasson, M. Greenman, Y. Roichman, and N. Tessler, "The mechanism of operation of lateral and vertical organic field effect transistors," Israel Journal of Chemistry, vol. 54, no. 5‐6, pp. 568-585, 2014.
[13] L. Ma and Y. Yang, "Unique architecture and concept for high-performance organic transistors," Applied physics letters, vol. 85, no. 21, pp. 5084-5086, 2004.
[14] A. J. Ben-Sasson et al., "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates," Applied Physics Letters, vol. 95, no. 21, 2009.
[15] B. Liu et al., "Carbon‐nanotube‐enabled vertical field effect and light‐emitting transistors," Advanced Materials, vol. 20, no. 19, pp. 3605-3609, 2008.
[16] M. A. McCarthy, B. Liu, and A. G. Rinzler, "High current, low voltage carbon nanotube enabled vertical organic field effect transistors," Nano letters, vol. 10, no. 9, pp. 3467-3472, 2010.
[17] H. Kleemann, A. A. Günther, K. Leo, and B. Lüssem, "High‐performance vertical organic transistors," Small, vol. 9, no. 21, pp. 3670-3677, 2013.
[18] C.-M. Keum, I.-H. Lee, S.-H. Lee, G. J. Lee, M.-H. Kim, and S.-D. Lee, "Quasi-surface emission in vertical organic light-emitting transistors with network electrode," Optics Express, vol. 22, no. 12, pp. 14750-14756, 2014.
[19] K. Fujimoto, T. Hiroi, and M. Nakamura, "Organic static induction transistors with nano-hole arrays fabricated by colloidal lithography," e-Journal of Surface Science and Nanotechnology, vol. 3, pp. 327-331, 2005.
[20] K.-Y. Wu, Y.-T. Tao, C.-C. Ho, W.-L. Lee, and T.-P. Perng, "High-performance space-charge-limited transistors with well-ordered nanoporous aluminum base electrode," Applied Physics Letters, vol. 99, no. 9, 2011.
[21] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, and N. Tessler, "Self-assembled metallic nanowire-based vertical organic field-effect transistor," ACS applied materials & interfaces, vol. 7, no. 4, pp. 2149-2152, 2015.
[22] M. Greenman, G. Sheleg, C.-m. Keum, J. Zucker, B. Lussem, and N. J. J. o. A. P. Tessler, "Reaching saturation in patterned source vertical organic field effect transistors," vol. 121, no. 20, p. 204503, 2017.
[23] H. Kwon, M. Kim, H. Cho, H. Moon, J. Lee, and S. J. A. F. M. Yoo, "Toward High‐Output Organic Vertical Field Effect Transistors: Key Design Parameters," vol. 26, no. 38, pp. 6888-6895, 2016.
[24] G. Sheleg, M. Greenman, B. Lussem, and N. J. J. o. A. P. Tessler, "Removing the current-limit of vertical organic field effect transistors," vol. 122, no. 19, p. 195502, 2017.
[25] H. Kleemann, A. A. Günther, K. Leo, and B. J. S. Lüssem, "High‐Performance Vertical Organic Transistors," vol. 9, no. 21, pp. 3670-3677, 2013.
[26] G. Lee et al., "Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway," vol. 121, no. 2, p. 024502, 2017.
[27] S. Kahmann, A. Shulga, and M. A. Loi, "Quantum dot light‐emitting transistors—powerful research tools and their future applications," Advanced Functional Materials, vol. 30, no. 20, p. 1904174, 2020.
[28] F. Hadef, "An introduction to nanomaterials," Environmental Nanotechnology: Volume 1, pp. 1-58, 2018.
[29] B. D. Malhotra and M. A. Ali, "Nanomaterials in biosensors: Fundamentals and applications," Nanomaterials for biosensors, p. 1, 2018.
[30] X. Jin et al., "Balancing the electron and hole transfer for efficient quantum dot light-emitting diodes by employing a versatile organic electron-blocking layer," ACS applied materials & interfaces, vol. 10, no. 18, pp. 15803-15811, 2018.
[31] K.-H. Lee et al., "Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots," ACS nano, vol. 8, no. 5, pp. 4893-4901, 2014.
[32] X. Jin et al., "Efficient light-emitting diodes based on reverse type-I quantum dots," Optical Materials Express, vol. 7, no. 12, pp. 4395-4407, 2017.
[33] J. Kwak et al., "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure," Nano letters, vol. 12, no. 5, pp. 2362-2366, 2012.
[34] H. H. Kim et al., "Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO," Scientific reports, vol. 5, no. 1, p. 8968, 2015.
[35] X. Dai et al., "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature, vol. 515, no. 7525, pp. 96-99, 2014.
[36] W. Ji et al., "Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer," ACS applied materials & interfaces, vol. 7, no. 29, pp. 15955-15960, 2015.
[37] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, "Emergence of colloidal quantum-dot light-emitting technologies," Nature photonics, vol. 7, no. 1, pp. 13-23, 2013.
[38] T.-W. F. Chang et al., "Efficient excitation transfer from polymer to nanocrystals," Applied Physics Letters, vol. 84, no. 21, pp. 4295-4297, 2004.
[39] M. J. Panzer, K. E. Aidala, P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, "Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films," Nano letters, vol. 10, no. 7, pp. 2421-2426, 2010.
[40] M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, "Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion," Nano letters, vol. 6, no. 7, pp. 1396-1400, 2006.
[41] P. R. Selvin, "[13] Fluorescence resonance energy transfer," in Methods in enzymology, vol. 246: Elsevier, 1995, pp. 300-334.
[42] J. A. Schmid and A. Birbach, "Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research," Thrombosis and haemostasis, vol. 97, no. 03, pp. 378-384, 2007.
[43] N. Stutzmann, R. H. Friend, and H. J. S. Sirringhaus, "Self-aligned, vertical-channel, polymer field-effect transistors," vol. 299, no. 5614, pp. 1881-1884, 2003.
[44] F. M. Sawatzki et al., "Balance of horizontal and vertical charge transport in organic field-effect transistors," vol. 10, no. 3, p. 034069, 2018.
[45] Y. Kim, S. Lee, C. Park, S. Lee, and M. Lee, "Substrate dependence on the optical properties of Al 2 O 3 films grown by atomic layer deposition," Applied Physics Letters, vol. 71, no. 25, pp. 3604-3606, 1997.
[46] J. Hergenrother et al., "50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics," in Technical Digest-International Electron Devices Meeting, 2001: Institute of Electrical and Electronics Engineers Inc., pp. 51-54.
[47] C.-S. Hwang, S.-H. K. Park, H. Oh, M.-K. Ryu, K.-I. Cho, and S.-M. Yoon, "Vertical channel ZnO thin-film transistors using an atomic layer deposition method," IEEE Electron Device Letters, vol. 35, no. 3, pp. 360-362, 2014.
[48] K. J. Nordell, E. M. Boatman, and G. C. Lisensky, "A safer, easier, faster synthesis for CdSe quantum dot nanocrystals," Journal of chemical education, vol. 82, no. 11, p. 1697, 2005.
[49] Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, and J. Q. Xiao, "Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals," Journal of the American Chemical Society, vol. 126, no. 22, pp. 6874-6875, 2004.
[50] D. Gammon, E. Snow, B. Shanabrook, D. Katzer, and D. Park, "Fine structure splitting in the optical spectra of single GaAs quantum dots," Physical review letters, vol. 76, no. 16, p. 3005, 1996.
[51] X. Michalet et al., "Quantum dots for live cells, in vivo imaging, and diagnostics," science, vol. 307, no. 5709, pp. 538-544, 2005.
[52] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," science, vol. 271, no. 5251, pp. 933-937, 1996.
[53] X. Peng, "Mechanisms for the shape‐control and shape‐evolution of colloidal semiconductor nanocrystals," Advanced Materials, vol. 15, no. 5, pp. 459-463, 2003.
[54] L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," Journal of the American Chemical Society, vol. 124, no. 9, pp. 2049-2055, 2002.
[55] L. Qu, W. W. Yu, and X. Peng, "In situ observation of the nucleation and growth of CdSe nanocrystals," Nano Letters, vol. 4, no. 3, pp. 465-469, 2004.
[56] Z. A. Peng and X. Peng, "Mechanisms of the shape evolution of CdSe nanocrystals," Journal of the American Chemical Society, vol. 123, no. 7, pp. 1389-1395, 2001.
[57] A. Mews, A. Eychmüller, M. Giersig, D. Schooss, and H. Weller, "Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide," The Journal of Physical Chemistry, vol. 98, no. 3, pp. 934-941, 1994.
[58] Z. Deng, H. Yan, and Y. Liu, "Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method," Journal of the American Chemical Society, vol. 131, no. 49, pp. 17744-17745, 2009.
[59] H. Shen et al., "High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method," CrystEngComm, vol. 11, no. 8, pp. 1733-1738, 2009.
[60] J. R. Dethlefsen and A. Døssing, "Preparation of a ZnS shell on CdSe quantum dots using a single-molecular ZnS precursor," Nano letters, vol. 11, no. 5, pp. 1964-1969, 2011.
[61] D.-H. Lee, Y.-P. Liu, K.-H. Lee, H. Chae, and S. M. Cho, "Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes," Organic Electronics, vol. 11, no. 3, pp. 427-433, 2010.
[62] H.-T. Vu, C.-Y. Huang, H.-C. Yu, and Y.-K. Su, "Ultrathin PVK charge control layer for advanced manipulation of efficient giant CdSe@ ZnS/ZnS quantum dot light-emitting diodes," Organic Electronics, vol. 63, pp. 349-354, 2018.
[63] O. Solomeshch et al., "Wide band gap cross-linkable semiconducting polymer LED," Synthetic metals, vol. 157, no. 21, pp. 841-845, 2007.
[64] T. Davidson-Hall and H. Aziz, "The role of polyethylenimine in enhancing the efficiency of quantum dot light-emitting devices," Nanoscale, vol. 10, no. 5, pp. 2623-2631, 2018.
[65] P.-C. Chiu and S.-H. Yang, "Improvement in hole transporting ability and device performance of quantum dot light emitting diodes," Nanoscale Advances, vol. 2, no. 1, pp. 401-407, 2020.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明