參考文獻 |
五、參考資料及文獻 (Reference)
1. Feng ZY, Zhang QY, Tan J, Xie HQ: Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? Sci China Life Sci 2022, 65(7):1325-1341.
2. Deng F, Miller J: A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019, 42(4):226-239.
3. Rezaie J, Ajezi S, Avci CB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A, Rahbarghazi R: Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Mol Neurobiol 2018, 55(4):3372-3393.
4. Liang Y, Duan L, Lu J, Xia J: Engineering exosomes for targeted drug delivery. Theranostics 2021, 11(7):3183-3195.
5. Kalluri R, LeBleu VS: The biology, function, and biomedical applications of exosomes. Science 2020, 367(6478).
6. Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepulveda P: Hypoxia Inducible Factor-1alpha Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes. Stem Cells 2017, 35(7):1747-1759.
7. da Silva Meirelles L, Chagastelles PC, Nardi NB: Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006, 119(Pt 11):2204-2213.
8. Troyer DL, Weiss ML: Wharton′s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008, 26(3):591-599.
9. Liu WZ, Ma ZJ, Li JR, Kang XW: Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021, 12(1):102.
10. Farley AR, Link AJ: Identification and quantification of protein posttranslational modifications. Methods Enzymol 2009, 463:725-763.
11. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X: Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front Pharmacol 2020, 11:590470.
12. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W: Exosomes Derived from Akt-Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D. Stem Cells Transl Med 2017, 6(1):51-59.
13. Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S et al: Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017, 60:220-232.
14. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S: Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 2012, 126(22):2601-2611.
15. O′Brien KP, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, O′Flatharta C, Ingoldsby H, Dockery P, De Bhulbh A et al: Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018, 37(16):2137-2149.
16. Xie L, Zeng Y: Therapeutic Potential of Exosomes in Pulmonary Fibrosis. Front Pharmacol 2020, 11:590972.
17. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, He T, Shen K, Wang Y, Liu J et al: Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell Res Ther 2021, 12(1):221.
18. Lee BC, Kang I, Yu KR: Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J Clin Med 2021, 10(4).
19. Jagirdar RM, Bozikas A, Zarogiannis SG, Bartosova M, Schmitt CP, Liakopoulos V: Encapsulating Peritoneal Sclerosis: Pathophysiology and Current Treatment Options. Int J Mol Sci 2019, 20(22).
20. Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW, Jager KJ, Mehrotra R, Naicker S, Pecoits-Filho R, Yu XQ, Lameire N: Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017, 13(2):90-103.
21. Morelle J, Sow A, Fustin CA, Fillee C, Garcia-Lopez E, Lindholm B, Goffin E, Vandemaele F, Rippe B, Oberg CM et al: Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane. J Am Soc Nephrol 2018, 29(7):1875-1886.
22. Garosi G, Di Paolo N: Morphological aspects of peritoneal sclerosis. J Nephrol 2001, 14 Suppl 4:S30-38.
23. Davies SJ: Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004, 66(6):2437-2445.
24. Schaefer B, Bartosova M, Macher-Goeppinger S, Sallay P, Voros P, Ranchin B, Vondrak K, Ariceta G, Zaloszyc A, Bayazit AK et al: Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int 2018, 94(2):419-429.
25. Lopez-Cabrera M: Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014, 2014:473134.
26. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, Kelly MM: Transient overexpression of TGF-beta1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol 2005, 16(2):425-436.
27. Strippoli R, Loureiro J, Moreno V, Benedicto I, Perez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT et al: Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 2015, 7(1):102-123.
28. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, Aguilera A, Sanchez-Tomero JA, Bajo MA, Alvarez V et al: Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003, 348(5):403-413.
29. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA: Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009, 119(6):1438-1449.
30. Moinuddin Z, Summers A, Van Dellen D, Augustine T, Herrick SE: Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front Physiol 2014, 5:470.
31. Latus J, Habib SM, Kitterer D, Korte MR, Ulmer C, Fritz P, Davies S, Lambie M, Alscher MD, Betjes MG et al: Histological and clinical findings in patients with post-transplantation and classical encapsulating peritoneal sclerosis: a European multicenter study. PLoS One 2014, 9(8):e106511.
32. Pollock CA: Diagnosis and management of encapsulating peritoneal sclerosis. Perit Dial Int 2001, 21 Suppl 3:S61-66.
33. Augustine T, Brown PW, Davies SD, Summers AM, Wilkie ME: Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009, 111(2):c149-154; discussion c154.
34. Nakamoto H: Encapsulating peritoneal sclerosis--a clinician′s approach to diagnosis and medical treatment. Perit Dial Int 2005, 25 Suppl 4:S30-38.
35. Kawaguchi Y, Kawanishi H, Mujais S, Topley N, Oreopoulos DG: Encapsulating peritoneal sclerosis: definition, etiology, diagnosis, and treatment. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int 2000, 20 Suppl 4:S43-55.
36. Brown MC, Simpson K, Kerssens JJ, Mactier RA, Scottish Renal R: Encapsulating peritoneal sclerosis in the new millennium: a national cohort study. Clin J Am Soc Nephrol 2009, 4(7):1222-1229.
37. Rigby RJ, Hawley CM: Sclerosing peritonitis: the experience in Australia. Nephrol Dial Transplant 1998, 13(1):154-159.
38. Nomoto Y, Kawaguchi Y, Kubo H, Hirano H, Sakai S, Kurokawa K: Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report of the Japanese Sclerosing Encapsulating Peritonitis Study Group. Am J Kidney Dis 1996, 28(3):420-427.
39. Summers AM, Abrahams AC, Alscher MD, Betjes M, Boeschoten EW, Braun N, Brenchley PE, Davies S, Dunn L, Engelsman L et al: A collaborative approach to understanding EPS: the European perspective. Perit Dial Int 2011, 31(3):245-248.
40. Kawanishi H, Moriishi M, Ide K, Dohi K: Recommendation of the surgical option for treatment of encapsulating peritoneal sclerosis. Perit Dial Int 2008, 28 Suppl 3:S205-210.
41. Kawanishi H, Moriishi M, Tsuchiya S: Experience of 100 surgical cases of encapsulating peritoneal sclerosis: investigation of recurrent cases after surgery. Adv Perit Dial 2006, 22:60-64.
42. Sporn MB: TGF-beta: 20 years and counting. Microbes Infect 1999, 1(15):1251-1253.
43. Massague J: TGF-beta signal transduction. Annu Rev Biochem 1998, 67:753-791.
44. Pepper MS: Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997, 8(1):21-43.
45. Wilson RB, Archid R, Reymond MA: Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-beta1 Inhibition. Int J Mol Sci 2020, 21(11).
46. Rynne-Vidal A, Au-Yeung CL, Jimenez-Heffernan JA, Perez-Lozano ML, Cremades-Jimeno L, Barcena C, Cristobal-Garcia I, Fernandez-Chacon C, Yeung TL, Mok SC et al: Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J Pathol 2017, 242(2):140-151.
47. Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425(6958):577-584.
48. Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M: TGFbeta-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci 2020, 77(11):2103-2123.
49. Zou H, Shan C, Ma L, Liu J, Yang N, Zhao J: Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PeerJ 2020, 8:e10136.
50. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
51. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
52. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432(7014):231-235.
53. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W: Single processing center models for human Dicer and bacterial RNase III. Cell 2004, 118(1):57-68.
54. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grasser FA, Lenhof HP et al: An estimate of the total number of true human miRNAs. Nucleic Acids Res 2019, 47(7):3353-3364.
55. Liu B, Li J, Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform 2014, 15(1):1-19.
56. Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12(2):99-110.
57. Ipsaro JJ, Joshua-Tor L: From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015, 22(1):20-28.
58. Zhang H, Wen H, Huang Y: MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med 2022, 24(2):506.
59. Li H, Zhang L, Cai N, Zhang B, Sun S: MicroRNA-494-3p prevents liver fibrosis and attenuates hepatic stellate cell activation by inhibiting proliferation and inducing apoptosis through targeting TRAF3. Ann Hepatol 2021, 23:100305.
60. Zhang Y, Gu T, Xu S, Wang J, Zhu X: Anti-Liver Fibrosis Role of miRNA-96-5p via Targeting FN1 and Inhibiting ECM-Receptor Interaction Pathway. Appl Biochem Biotechnol 2023.
61. Wang J, Chu ES, Chen HY, Man K, Go MY, Huang XR, Lan HY, Sung JJ, Yu J: microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget 2015, 6(9):7325-7338.
62. Zhao M, Qi Q, Liu S, Huang R, Shen J, Zhu Y, Chai J, Zheng H, Wu H, Liu H: MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front Physiol 2022, 13:895242.
63. Magri F, Vanoli F, Corti S: miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2018, 22(2):755-767.
64. Xun J, Du L, Gao R, Shen L, Wang D, Kang L, Chen C, Zhang Z, Zhang Y, Yue S et al: Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B. Theranostics 2021, 11(14):6847-6859.
65. Wu KL, Chou CY, Chang HY, Wu CH, Li AL, Chen CL, Tsai JC, Chen YF, Chen CT, Tseng CC et al: Peritoneal effluent MicroRNA profile for detection of encapsulating peritoneal sclerosis. Clin Chim Acta 2022, 536:45-55.
66. Gonzalez DM, Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014, 7(344):re8.
67. Scheau C, Badarau IA, Costache R, Caruntu C, Mihai GL, Didilescu AC, Constantin C, Neagu M: The Role of Matrix Metalloproteinases in the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2019, 2019:9423907.
68. Zhang T, Day JH, Su X, Guadarrama AG, Sandbo NK, Esnault S, Denlinger LC, Berthier E, Theberge AB: Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front Bioeng Biotechnol 2019, 7:196.
69. Kumari J, Wagener F, Kouwer PHJ: Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS Appl Mater Interfaces 2022, 14(17):19212-19225.
70. Zaravinos A: The Regulatory Role of MicroRNAs in EMT and Cancer. J Oncol 2015, 2015:865816.
71. Li F, Ma N, Zhao R, Wu G, Zhang Y, Qiao Y, Han D, Xu Y, Xiang Y, Yan B et al: Overexpression of miR-483-5p/3p cooperate to inhibit mouse liver fibrosis by suppressing the TGF-beta stimulated HSCs in transgenic mice. J Cell Mol Med 2014, 18(6):966-974.
72. Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu Y, Wang P, Bai C, Gu Y, Zhou PK: MiRNA-155-5p inhibits epithelium-to-mesenchymal transition (EMT) by targeting GSK-3beta during radiation-induced pulmonary fibrosis. Arch Biochem Biophys 2021, 697:108699.
73. Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X: MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017, 87:412-418. |