博碩士論文 110232002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.116.65.125
姓名 何家綸(Jia-Lun Ho)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 利用電漿輔助原子層沉積鍍製抗反射膜於塑膠基板之環境測試
(Environment Test of Anti-Reflection Coating on Plastic Substrate by Plasma Enhanced Atomic Layer Deposition)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯與超導金屬介面的電子穿隧行為
★ 石墨烯透明導電膜與其成長模型之研究★ 電漿輔助石墨烯直接成長在Pt上成長機制
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 快速退火影響石墨烯晶粒尺寸之研究★ 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜
★ 快速退火生長高品質石墨烯★ 改善石墨烯轉印品質之研究
★ 暗場顯微鏡系統監控石墨烯成長之研究★ 以射頻磁控濺鍍鍍製多層有機矽阻障層研究
★ 真空聚合物薄膜在三維曲面研究★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-19以後開放)
摘要(中) 本論文使用電漿輔助原子層沉積技術鍍製抗反射膜於PMMA基板,在低溫製程70°C下前驅物使用TDMAT及3DMAS分別鍍製TiO2及SiO2,使用電漿模式通入氧氣混合氬氣做為氧化方式,在單層膜下探討折射率(n)及消光係數(k)之趨勢找出最佳製程參數與條件,塑膠基板本身是軟性基材,因此在鍍製多層膜中使用 150W 及 100W 容易造成基板表面受到離子轟擊影響產生損傷形成裂痕,因此實驗中 則選用 50W 做為鍍製抗反射膜之條件。透過量測儀器來分析其單層膜及多層膜之結構,X 光繞射儀器來 確認其 TiO2 薄膜結構之組成,隨著 ALD 循環次數(膜厚)提高其結晶 強度從 82 上升至 117,使用原子力顯微鏡來探討薄膜表面之粗糙度,其平均粗糙度約為0.28nm顯示出薄膜表面相當平坦,因此在 TiO2單層膜中處於微結晶狀態,多層膜使用高解析掃描穿透式電子顯微鏡觀察抗反射膜之結構來驗證與Macleod模擬軟體所設計的層數皆相符。利用奈米複合層在單層膜中插入抑制層能有效降低其結晶現象來降低薄膜之應力,透過恆溫恆濕機台在惡劣環境下觀察其薄膜變化及時間耐久性,環境測試條件設定在溫度 85°C及濕度85%,在未插入抑制層的抗反射膜能延長至998小時,有插入 4層1.5nm SiO2的抗反射膜僅能維持在209 小時,從結果表明 TiO2 隨著插入層數增加無明顯改善應力,反而TiO2隨厚度遞減使薄膜偏向不緻密性在高濕度下水氣容易侵蝕薄膜,在未插層中TiO2薄膜相對厚因此緻密性足夠因而有較低WVTR,對於整體抗反射膜能有較佳的耐久性。
摘要(英) In this study, plasma-assisted atomic layer deposition technology was employed to coat an anti-reflective film on a PMMA substrate. The precursors, TDMAT and 3DMAS, were used respectively for the deposition of TiO2 and SiO2 films at a low temperature of 70°C. The plasma mode introduces a mix of oxygen and argon for oxidation. The refractive index (n) and extinction coefficient (k) trends in the single-layer film were examined to determine optimal process parameters and conditions. Given that the plastic substrate is soft, using power settings of 150 watts and 100
watts for multi-layer coatings can lead to substrate surface damage and crack formation due to ion bombardment. As a result, a 50-watt setting was chosen for anti-reflection film deposition in these experiments. The structures of single and multi-layer films were analyzed using measurement instruments, with the composition of the TiO2 film structure confirmed via X-ray diffraction. As the number of ALD cycles (indicative of film thickness) increased, its crystallization strength rose from 82 to 117. Atomic force microscopy revealed a film surface roughness of approximately 0.28 nm, indicating a notably flat surface. Hence, the single layer TiO2 film exhibits a microcrystalline state. The multi-layer film structure, in contrast, was verified to match the layer count predicted by Macleod simulation software when examined using a transmission electron microscope. By incorporating an inhibition layer within the nano-composite layer of a single film, the crystallization phenomenon can be effectively reduced, subsequently lowering the stress on the film. The film′s changes and durability under harsh conditions were observed using a constant temperature and humidity machine, with test conditions set at 85°C and a
humidity of 85%. Anti-reflective films without the inhibition layer lasted up to 998 hours. In contrast, anti-reflective films with four inserted layers of 1.5nm SiO2 only persisted for 209 hours. The results show that the stress on the TiO2 does not show significant improvement with increasing insertion layers. Instead, the thickness of TiO2 decreases, causing the film to become less dense. In high humidity, the film is easily eroded by moisture. The relatively thicker TiO2 film in non-inserted layers is denser, resulting in a lower WVTR, thus providing better durability for the anti reflective film.
關鍵字(中) ★ 電漿輔助原子層沉積
★ 抗反射膜
★ 奈米複合層
★ 塑膠基板
★ 抑制結晶
關鍵字(英) ★ Plasma Enhanced Atomic Layer Deposition
★ Anti-reflection coating
★ Nano-composite layer
★ Plastic substrate
★ Reduce the crystallization
論文目次 中文摘要 i
ABSTRACTii
致謝iv
目錄vi
圖目錄viii
表目錄xii
第一章 緒論1
1-1 前言1
1-2 研究目的與動機6
第二章 基礎理論與文獻回顧 8
2-1 原子層沉積技術工作原理8
2-1-1 化學氣相沉積技術8
2-1-2 原子層沉積法11
2-1-3 電漿輔助原子層沉積系統(PE-ALD)17
2-2 抗反射膜及塑膠鍍膜之理論20
2-2-1 抗反射膜原理20
2-2-2 鍍膜塑膠基板之問題22
2-3 奈米複合層之機械特性25
2-4 文獻探討29
第三章 實驗方法與儀器設備43
3-1 實驗方法43
3-1-1 實驗流程43
3-1-2 實驗步驟44
3-2 製程設備原理與條件49
3-3 量測儀器介紹與原理56
3-3-1 UV-VIS-NIR落地型分光光譜儀器56
3-3-2 橢圓偏振儀器58
3-3-3 高解析掃描穿透式電子顯微鏡(Transmission Electron Microscope, TEM)60
3-3-4 可程式恆溫恆濕機(Programmable Temp. & Humi. Chamber)62
3-3-5 原子力顯微鏡(Atomic Force Microscope, AFM)64
3-3-6 X光繞射儀(X-Ray Diffractometer, XRD)66
3-3-7 光學顯微鏡 (Optical Microscope, OM)67
第四章 實驗結果與討論68
4-1 單層膜之光學特性68
4-2 TiO2與HfO2機械應力之比較76
4-3 抗反射膜之光學特性及結構分析82
4-4 抗反射膜之環境測試86
第五章 結論90
參考文獻91
參考文獻 [1] 2022/2023 年產業技術白皮書,產業篇,經濟部技術處(2022)
[2] 2021/2022 年產業技術白皮書,產業篇,經濟部技術處,(2021)
[3]3D感測技術發展與應用趨勢.大和有話說
Available : https://meet.bnext.com.tw/blog/view/2972
[3]Chi-Chung Lau, Si-Min Chou (-2019). 結構光三維成像及其編碼技術.科儀 新知, 219(6),25–37.
[4]微陣列透鏡
Available: https://reurl.cc/gW0n34
Available: https://reurl.cc/b9WGMl
[5] Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics: From theory to practice. Optik & Photonik, 12(3), 42-45.
[6]AR之光學模組
Available :https://reurl.cc/GAnX5v
[7] Pfeiffer, K., Schulz, U., Tünnermann, A., & Szeghalmi, A. (2017). Antireflection coatings for strongly curved glass lenses by atomic layer deposition. Coatings, 7(8), 118.
[8] Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., ... & Liu, Z. (2021). Chemical vapour deposition. Nature Reviews Methods Primers, 1(1), 5.
[9] Saeed, M., Alshammari, Y., Majeed, S. A., & Al-Nasrallah, E. (2020). Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. Molecules,25(17), 3856.
[10] 郭建均,&郭明村. (2009).電漿輔助化學氣相沉積法於矽薄膜太陽能電池的應用.科儀新知, (173), 15-27.
[11] Zhao, X., Wei, C., Gai, Z., Yu, S., & Ren, X. (2020). Chemical vapor deposition and its application in surface modification of nanoparticles. Chemical Papers, 74, 767-778.
[12] Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., ... & Wee, A. T. S. (2015). Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS nano, 9(1), 164-171.
[13]PECVD腔體示意圖
Available: https://reurl.cc/65KLpd
[14] Oviroh, P. O., Akbarzadeh, R., Pan, D., Coetzee, R. A. M., & Jen, T. C. (2019). New development of atomic layer deposition: processes, methods and applications. Science and technology of advanced materials, 20(1), 465-496.
[15] Johnson, R.W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials today, 17(5), 236-246.
[16] ALD、CVD、PVD薄膜沉積之比較
Available: https://reurl.cc/OvYVY9
[17] Kim,H.(2011). Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films, 519(20), 6639-6644.
[18] Pakkala, A.,& Putkonen, M. (2010). Atomic layer deposition. In Handbook of deposition technologies for films and coatings (pp. 364-391). William Andrew Publishing.
[19] Profijt, H. B., Potts, S. E., Van de Sanden, M. C. M., & Kessels, W. M. M. (2011). Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science & Technology A, 29(5).
[20] Knoops, H., Faraz, T., Arts, K., & Kessels, W. M. (2019). Status and prospects of plasma-assisted atomic layer deposition. Journal of Vacuum Science & Technology A, 37(3).
[21] Kemell, M., Färm, E., Ritala, M., & Leskelä, M. (2008). Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films. European Polymer Journal, 44(11), 3564-3570.
[22] George, S. M. (2010). Atomic layer deposition: an overview. Chemical reviews, 110(1), 111-131.
[23] Chen, Y., Ginga, N. J., LePage, W. S., Kazyak, E., Gayle, A. J., Wang, J.,...& Dasgupta, N. P. (2019). Enhanced interfacial toughness of thermoplastic–epoxy interfaces using ALD surface treatments. ACS applied materials & interfaces, 11(46), 43573-43580.
[24] Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., ... & Martinu, L. (2018). Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2).
[25] Shugurov, A. R., & Panin, A. V. (2020). Mechanisms of stress generation in thin films and coatings. Technical Physics, 65, 1881-1904.
[26] Schulz, U. (2006). Review of modern techniques to generate antireflective properties on thermoplastic polymers. Applied optics, 45(7), 1608-1618.
[27] Dayal, P., Savvides, N., & Hoffman, M. (2009). Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films, 517(13), 3698-3703.
[28] Zhang, J. Y., Zhang, X., Wang, R. H., Lei, S. Y., Zhang, P., Niu, J. J., ... & Sun, J. (2011). Length-scale-dependent deformation and fracture behavior of Cu/X (X= Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Materialia, 59(19), 7368-7379.
[29] Was, G. S., & Foecke, T. (1996). Deformation and fracture in microlaminates. Thin Solid Films, 286(1-2), 1-31.
[30] Odette, G. R., Chao, B. L., Sheckherd, J. W., & Lucas, G. E. (1992). Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite. Acta metallurgica et materialia, 40(9), 2381-2389.
[31] Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science & Technology, 50, 215-244.
[32] Schulz, U., Munzert, P., & Kaiser, N. (2001). Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion. Surface and Coatings Technology, 142, 507-511.
[33] Paul, P., Pfeiffer, K., & Szeghalmi, A. (2020). Antireflection coating on PMMA substrates by atomic layer deposition. Coatings, 10(1), 64.
[34] Testoni, G. E., Chiappim, W., Pessoa, R. S., Fraga, M. A., Miyakawa, W., Sakane, K. K., ... & Maciel, H. S. (2016). Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties. Journal of Physics D: Applied Physics, 49(37), 375301.
[35] Kim, L. H., Kim, K., Park, S., Jeong, Y. J., Kim, H., Chung, D. S., ... & Park, C. E. (2014). Al2O3/ TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS applied materials & interfaces, 6(9), 6731-6738.
[36] Su, Z., & Zhou, W. (2008). Formation mechanism of porous anodic aluminium and titanium oxides. Advanced materials, 20(19), 3663-3667.
[37] Ghazaryan, L., Handa, S., Schmitt, P., Beladiya, V., Roddatis, V., Tünnermann, A., & Szeghalmi, A. (2020). Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology, 32(9), 095709.
[38] Ylivaara, O. M., Kilpi, L., Liu, X., Sintonen, S., Ali, S., Laitinen, M., ... & Puurunen, R.L.(2017). Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. Journal of Vacuum Science & Technology A, 35(1).
[39] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422-1426.
[40] Bulusu, A., Singh, A., Wang, C. Y., Dindar, A., Fuentes-Hernandez, C., Kim, H., ... & Graham, S. (2015). Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. Journal of Applied Physics, 118(8).
[41] Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2017). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied optics, 56(4), C47-C59.
[42] Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模 組開發. 科儀新知, 33(6), 40–48.
[43] Kannan, M. (2018). Transmission electron microscope—Principle, components and applications. A textbook on fundamentals and applications of nanotechnology, 93-102.
[44] 巨孚儀器 Available:https://shorturl.at/wCNRY
[45] Ming Yen Lin, Chia-Seng Chang, Wenlung Li.(2005).原子力顯微儀的原理(下).科儀新知, (148), 46-57.
[46]原子力顯微鏡原理 Available: https://reurl.cc/aVRYOZ
[47]利用X-ray看透材料原子排列結構世界
Available: https://reurl.cc/ZWEk06
[48]複式光學顯微鏡 Available: https://reurl.cc/NAkAAn
[49] Maeng, W. J., & Kim, H. (2006). Thermal and plasma-enhanced ALD of Ta and Ti oxide thin films from alkylamide precursors. Electrochemical and solid-state letters, 9(6), G191.
[50] Xie, Q., Musschoot, J., Deduytsche, D., Van Meirhaeghe, R. L., Detavernier, C., Van den Berghe, S., ... & Qu, X. P. (2008). Growth kinetics and crystallization behavior of TiO2 films prepared by plasma enhanced atomic layer deposition. Journal of The Electrochemical Society, 155(9), H688.
[51] 李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
[52] 王晟輔&郭倩丞. (2022).利用電漿輔助原子沉積法沉積奈米複合層改善塑膠基板之膜裂現象.光電科學與工程學系.國立中央大學.
[53] Iatsunskyi, I., Coy, E., Viter, R., Nowaczyk, G., Jancelewicz, M., Baleviciute, I., ... & Jurga, S. (2015). Study on structural, mechanical, and optical properties of Al2O3–TiO2 nanolaminates prepared by atomic layer deposition. The Journal of Physical Chemistry C, 119(35), 20591-20599.
[54] Aghaee, M., Maydannik, P. S., Johansson, P., Kuusipalo, J., Creatore, M., Homola, T., & Cameron, D. C. (2015). Low temperature temporal and spatial atomic layer deposition of TiO2 films. Journal of Vacuum Science & Technology A, 33(4).
[55] Lee, Y., Seo, S., Oh, I. K., Lee, S., & Kim, H. (2019). Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition. Ceramics International, 45(14), 17662-17668.
指導教授 郭倩丞(Chen-Cheng Kuo) 審核日期 2023-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明