博碩士論文 109226084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.14.130.205
姓名 黃靖軒(Ching-Hsuan Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用橢圓反射鏡建立成像散射儀
(An imaging scatterometry system based on ellipsoidal mirror)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-12以後開放)
摘要(中) 花瓣表面微結構的光學特性一直是科學家探討的議題,現今普遍常見的漫反射量測方法有角光度量測(Goniophotometric measurement)、積分球(Integrating sphere)等方法。角光度量測在使用上需要逐點接收訊號,較於費時。另外,由於採摘花瓣後,細胞會逐漸萎縮,使用角光度系統量測會導致數據因為細胞萎縮而有所差異。而積分球是將所有光束的能量匯聚在一起進行積分,因此,其結果無法得知樣本的角度訊息,只能獲得光譜的分布。為了快速收集樣本的漫反射角度資訊,本研究建立一套成像散射儀系統(Imaging Scatterometry) ,此系統能夠一次收集半球面的漫反射角度資訊。實驗中利用橢圓反射鏡共焦的特性來進行系統架設,當樣本放置於橢圓反射鏡的第一焦點,其所產生漫反射光的角度資訊會被橢圓反射鏡反射後收斂於第二焦點,將角度資訊透過透鏡轉換為傅氏平面上的資訊,接著,使用相機記錄傅氏平面即可得知樣本漫反射光強度的角度資訊。
為了定位影像中的角度資訊,藉由線性擬合的方式找出影像中像素與角度的關係,以此描繪出角度座標圖。接著使用標準樣本來驗證角度座標圖的正確性以及精準度。最後為使用成像散射儀來量測3種表面粗糙度不同的樣本,探討不同樣本所呈現的光學特性。
摘要(英) The optical properties of petal surface microstructures have always been a subject of discussion by scientists. Nowadays, the commonly used diffuse reflectance measurement methods include goniophotometric measurement, integrating sphere and other methods. The use of goniophotometry needs to receive signals point by point, which is time-consuming. In addition, since the cells will gradually shrink after the petals are picked, the measurement using the goniophotometric system will cause differences in the data due to the shrinkage of the cells. The integrating sphere gathers the energy of all beams together for integration, therefore, the angle information of the sample cannot be obtained from the result, only the distribution of the spectrum can be obtained. In order to quickly collect the diffuse reflection angle information of the sample, this study established an imaging scatterometer system (Imaging Scatterometry), which can collect the diffuse reflection angle information of the hemisphere at one time. In the experiment, the confocal characteristics of the elliptical reflector are used to set up the system. When the sample is placed at the first focal point of the elliptical reflector, the angle information of the diffuse light generated by it will be reflected by the elliptical reflector and then converge to the second focus. The angle information is converted into information on the Fourier plane through the lens, and then, the angle information of the diffuse reflection light intensity of the sample can be obtained by using the camera to record the Fourier plane.
In order to locate the angle information in the image, the relationship between the pixel and the angle in the image is found out by means of linear fitting, so as to draw the angle coordinate diagram. Then use the standard sample to verify the correctness and accuracy of the angular coordinate diagram. Finally, three samples with different surface roughness were measured by imaging scatterometry, and the optical properties presented by different samples were discussed.
關鍵字(中) ★ 橢圓反射鏡 關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻探討與回顧 2
1.2.1 花瓣表面微結構的光學特性之相關研究 2
1.2.2 漫反射量測系統 6
1.3 論文架構 10
第二章 實驗原理 11
2.1 花瓣的散射光 11
2.2 表面微結構的光學特性 13
2.2.1 大結構 13
2.2.2 微結構 16
2.3 橢圓反射鏡 18
第三章 系統架構 21
3.1 成像散射儀系統 21
3.1.1 成像系統 22
3.1.2 漫反射量測系統 23
3.2 計算入射樣本的角度 24
3.3 橢圓反射鏡 26
3.3.1 橢圓反射鏡規格 26
3.3.2 設計橢圓反射鏡mount 27
3.3.3 校正橢圓反射鏡 28
3.4 樣本 32
3.4.1 設計樣本台 33
3.4.2 校正樣本 34
3.4.3 標準樣本 35
3.4.4 散射樣本 35
第四章 實驗結果 36
4.1 角度座標圖校正 36
4.1.1 使用反射鏡定位角度座標圖 36
4.1.2 使用光柵驗證角度座標圖 41
4.2 使用成像散射儀量測不同樣本的結果與討論 49
4.2.1 白紙 49
4.2.2 面膜包裝紙 50
4.2.3 大藍閃蝶 56
4.2.4 大花咸豐草與向日葵 60
第五章 結論 77
參考資料 79
參考文獻 [1] D. Peitsch, A. Fietz, H. Hertel, J. de Souza, D. F. Ventura, and R. Menzel, "The spectral input systems of hymenopteran insects and their receptor-based colour vision," Journal of Comparative Physiology A, vol. 170, no. 1, pp. 23-40, 1992.
[2] K. Lunau, "Visual ecology of flies with particular reference to colour vision and colour preferences," Journal of Comparative Physiology A, vol. 200, no. 6, pp. 497-512, 2014.
[3] J.-W. Xu, "黑斑龍膽花瓣表面結構及其光學特性之研究," National Central University, 2020.
[4] S. N. Fernandes et al., "Structural color and iridescence in transparent sheared cellulosic films," Macromolecular Chemistry and Physics, vol. 214, no. 1, pp. 25-32, 2013.
[5] H. Whitney, M. Kolle, R. Alvarez-Fernandez, U. Steiner, and B. Glover, "Contributions of iridescence to floral patterning," Communicative & Integrative Biology, vol. 2, no. 3, pp. 230-232, 2009.
[6] H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, and B. J. Glover, "Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators," Science, vol. 323, no. 5910, pp. 130-133, 2009.
[7] M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chemical reviews, vol. 99, no. 7, pp. 1935-1962, 1999.
[8] S. Vignolini et al., "Pointillist structural color in Pollia fruit," Proceedings of the National Academy of Sciences, vol. 109, no. 39, pp. 15712-15715, 2012.
[9] M. Kolle, Photonic structures inspired by nature. Springer Science & Business Media, 2011.
[10] A. Schweikart et al., "Fabrication of Artificial Petal Sculptures by Replication of Sub‐micron Surface Wrinkles," Macromolecular Chemistry and Physics, vol. 211, no. 2, pp. 259-264, 2010.
[11] D. Stavenga, H. Leertouwer, P. Pirih, and M. Wehling, "Imaging scatterometry of butterfly wing scales," Optics Express, vol. 17, no. 1, pp. 193-202, 2009.
[12] S. Papiorek et al., "Bees, birds and yellow flowers: pollinator‐dependent convergent evolution of UV patterns," Plant Biology, vol. 18, no. 1, pp. 46-55, 2016.
[13] F. Richtmyer, "The reflection of ultraviolet by flowers," JOSA, vol. 7, no. 2, pp. 151-168, 1923.
[14] A. J. Schulte, M. Mail, L. A. Hahn, and W. Barthlott, "Ultraviolet patterns of flowers revealed in polymer replica–caused by surface architecture," Beilstein Journal of Nanotechnology, vol. 10, no. 1, pp. 459-466, 2019.
[15] K. Lunau, "The ecology and evolution of visual pollen signals," Plant Systematics and Evolution, vol. 222, pp. 89-111, 2000.
[16] 藍聖荃, "近紫外光結構照明顯微術應用於花瓣表面光學特性之研究," 碩士, 光電科學與工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available: https://hdl.handle.net/11296/y3a47t
[17] C. J. van der Kooi, B. D. Wilts, H. L. Leertouwer, M. Staal, J. T. M. Elzenga, and D. G. Stavenga, "Iridescent flowers? Contribution of surface structures to optical signaling," New Phytologist, vol. 203, no. 2, pp. 667-673, 2014.
[18] S. Vignolini et al., "The flower of H ibiscus trionum is both visibly and measurably iridescent," New Phytologist, vol. 205, no. 1, pp. 97-101, 2015.
[19] M. Giraldo, S. Yoshioka, and D. Stavenga, "Far field scattering pattern of differently structured butterfly scales," Journal of Comparative Physiology A, vol. 194, no. 3, pp. 201-207, 2008.
[20] L. Hanssen, "Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples," Applied Optics, vol. 40, no. 19, pp. 3196-3204, 2001.
[21] S. Vignolini et al., "The mirror crack′d: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum," New Phytologist, vol. 196, no. 4, pp. 1038-1047, 2012.
[22] T. Herffurth, S. Schröder, M. Trost, A. Duparré, and A. Tünnermann, "Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor," Applied optics, vol. 52, no. 14, pp. 3279-3287, 2013.
[23] C. J. van der Kooi, A. G. Dyer, P. G. Kevan, and K. Lunau, "Functional significance of the optical properties of flowers for visual signalling," Annals of Botany, vol. 123, no. 2, pp. 263-276, 2019.
[24] C. J. van der Kooi, J. T. M. Elzenga, M. Staal, and D. G. Stavenga, "How to colour a flower: on the optical principles of flower coloration," Proceedings of the Royal Society B: Biological Sciences, vol. 283, no. 1830, p. 20160429, 2016.
[25] E. Narbona, J. C. del Valle, and J. B. Whittall, "Painting the green canvas: how pigments produce flower colours," The Biochemist, vol. 43, no. 3, pp. 6-12, 2021.
[26] G. A. Blackburn, "Hyperspectral remote sensing of plant pigments," Journal of experimental botany, vol. 58, no. 4, pp. 855-867, 2007.
[27] E. Grotewold, "The genetics and biochemistry of floral pigments," Annu. Rev. Plant Biol., vol. 57, pp. 761-780, 2006.
[28] J. Pawelek, G. Wong, M. Sansone, and J. Morowitz, "Molecular biology of pigment cells. Molecular controls in mammalian pigmentation," The Yale journal of biology and medicine, vol. 46, no. 5, p. 430, 1973.
[29] S. Aspengren, D. Hedberg, H. N. Sköld, and M. Wallin, "New insights into melanosome transport in vertebrate pigment cells," International review of cell and molecular biology, vol. 272, pp. 245-302, 2008.
[30] T. Wilson and J. W. Hastings, "Bioluminescence," Annual review of cell and developmental biology, vol. 14, no. 1, pp. 197-230, 1998.
[31] A. Chatterjee, "At the Intersection of Natural Structural Coloration and Bioengineering," Biomimetics, vol. 7, no. 2, p. 66, 2022.
[32] B. D. Wilts, H. L. Leertouwer, and D. G. Stavenga, "Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers," Journal of the Royal Society Interface, vol. 6, no. suppl_2, pp. S185-S192, 2009.
[33] M. Giraldo, S. Yoshioka, C. Liu, and D. Stavenga, "Coloration mechanisms and phylogeny of Morpho butterflies," Journal of Experimental Biology, vol. 219, no. 24, pp. 3936-3944, 2016.
[34] M. W. D. K. I. Tchourioukanov. "A picture of specular reflection and diffuse reflection." https://micro.magnet.fsu.edu/primer/java/scienceopticsu/reflection/specular/ (accessed.
[35] E. Hecht, Optics. Pearson Education India, 2012.
[36] J. W. Goodman, Introduction to Fourier optics. Roberts and Company publishers, 2005.
[37] J. Liu, M. Ai, H. Zhang, C. Wang, and J. Tan, "Focusing of an elliptical mirror based system with aberrations," Journal of Optics, vol. 15, no. 10, p. 105709, 2013.
[38] S.-P. Ying and J.-C. Lyu, "Ellipsoidal reflector design of the LED vehicle projector type headlamp," in Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 2016, vol. 9954: SPIE, pp. 105-112.
[39] H. Rehn, "Ray tracing software application in VIP lamp design," in Modeling and Characterization of Light Sources, 2002, vol. 4775: SPIE, pp. 22-35.
[40] Y.-L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, and J. D. Eversole, "Characterizing and monitoring respiratory aerosols by light scattering," Optics letters, vol. 28, no. 8, pp. 589-591, 2003.
[41] F. Liu et al., "Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus," Optics Communications, vol. 284, no. 9, pp. 2376-2381, 2011.
[42] M. Giraldo and D. Stavenga, "Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina," Journal of Comparative Physiology A, vol. 202, no. 5, pp. 381-388, 2016.
[43] P. Köchling, A. Niebel, K. Hurka, F. Vorholt, and H. Hölscher, "On the multifunctionality of butterfly scales: a scaling law for the ridges of cover scales," Faraday discussions, vol. 223, pp. 195-206, 2020.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明