博碩士論文 110329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.128.31.76
姓名 余佳宣(Jia-Xuan Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用脈衝雷射鍛燒法製備高效能之 高熵氧化物/多孔鎳超電容器電極
(Fabrication of Highly Efficient High Entropy Oxide/Ni Porous Substrate Supercapacitor Electrodes Using Pulsed Laser Calcination)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著科技快速發展,能源消耗與環境汙染問題與日俱增,促使全球能源議題的重視,也象徵著可再生能源與能源裝置的使用不可或缺。超級電容器其具有快速充放電、高比電容值與功率密度且耐高溫高壓等優異性能,而被認為是高效的儲能設備之一。在一般傳統超級電容器製造上,通常會採用漿料塗布技術,然而此技術易使得製程複雜性提升,因此如何開發無添加劑電極,成為研究人員新的研究課題。
  本研究致力於開發無須添加黏合劑與助導劑,製作可直接進行量測之高熵氧化物/壓錠多孔鎳電極。研究總共可分為三部分,第一部份為探討使用鎳粉末以壓錠技術製成壓錠多孔鎳基板(Ni porous, NP)與商用發泡鎳,並作為超級電容之集電層進行電化學性能比較,第二部分為利用脈衝雷射鍛燒法探討活性材料高熵氧化物、錳鐵氧化物、鐵氧化物,三者晶體結構與電化學性能差異,第三部分則為將壓錠多孔鎳基板,浸泡高熵金屬鹽類前驅物一段時間後烘乾,並分別使用高溫熱裂解法與脈衝雷射鍛燒法,於壓錠多孔鎳基板上生成高熵氧化物。
  透過微觀結構分析,相較商用發泡鎳基板,壓錠多孔鎳基板呈現顆粒狀形貌,由電化學電性分析,脈衝雷射功率1W下之高熵氧化物/壓錠多孔鎳電極,於1A/g電流密度比電容值為870 F/g,且高熵氧化物作為活性物質其性能要優異於單一與雙金屬氧化物,而高溫熱裂解法之電極由於高熵氧化物相較於脈衝雷射鍛燒法緻密,造成電極阻抗大,在電化學分析下,於1A/g電流密度下比電容明顯遠低於脈衝雷射鍛燒法。透過本研究結果顯示,利用脈衝雷射鍛燒法,其具有操作簡易與製造省時的特性,可有效合成無須添加劑之超級電容活性材料高熵氧化物。
摘要(英) High-entropy oxides have attracted researcher′s interest due to the entropy stabilization effects caused by the interaction between different ions. Slurry coating technology is often used in the manufacturing of supercapacitors, however, the residual binder may influence the performance of fabricated supercapacitor.
  This research is dedicated to the development of binder-free fabrication process and characterization of highly efficient high entropy oxide/Ni porous substrate electrodes. In the first part, the of ingot porous nickel substrate (Ni porous, NP) made of nickel powder is used as current collector layer, and the electrochemical performance of the NP supercapacitor is compared with that of commercial foamed nickel substrate. In the second part, electrodes with active materials of high entropy oxide, manganese iron oxide, and iron oxide are fabricated by using pulsed laser calcination. The materials are characterized by using X-ray diffraction (XRD). Lastly, performance of high entropy oxide/Ni porous substrate electrodes fabricated by using pulsed laser calcination is compared with that of high temperature pyrolysis process.
  The SEM results show that the microstructure of ingot porous nickel substrate is consist of porous backbones with nanostructures of particles. High-entropy oxides show better performance than single and bimetallic oxide. The electrochemical analysis of HEO/NP electrode with a pulsed laser power of 1W shows a specific capacitance value of 870 F/g at 1A/g. These results show that pulsed laser calcination is a facile and time-saving manufacturing process for effectively synthesizing high-entropy oxides on porous nickel substrate.
關鍵字(中) ★ 超級電容器
★ 高熵氧化物
★ 脈衝雷射鍛燒法
★ 無黏結劑電極
★ 壓錠多孔鎳
關鍵字(英) ★ Supercapacitors
★ High-entropy oxides
★ Pulsed laser calcination
★ Binder-free electrodes
★ Ni porous substrate
論文目次 摘要I
AbstractIII
致謝IV
目錄V
圖目錄IX
表目錄XIII
第一章 緒論1
1.1 前言1
1.2 基本原理與文獻回顧2
1.2.1 超級電容器簡介2
1.2.2 超級電容器之儲能機制4
1.2.2.1 電雙層電容器(EDLC)5
1.2.2.2 擬電容器(Pseudocapacitor)7
1.2.2.3 混合電容器(Hybrid supercapacitor)9
1.2.3 超級電容之結構組成10
1.2.3.1 超級電容器之電解質11
1.2.3.2 超級電容器之集電層14
1.2.3.3 超級電容器之活性材料17
1.2.4 高熵氧化物(High entropy oxides, HEO)23
1.2.5 脈衝雷射鍛燒法(Pulsed laser calcination)27
1.2.6 超級電容器之電化學分析技術28
1.2.6.1 循環伏安法(Cyclic voltammetry, CV)28
1.2.6.2 恆電流充放電法(Galvanostatic charge-discharge, GCD) 30
1.2.6.3 電化學交流阻抗頻譜(Electrochemical impedance spectroscopy, EIS)31
1.3 研究動機與目的32
第二章 實驗方法33
2.1 實驗藥品33
2.2 製程與分析儀器34
2.2.1紫外光臭氧清洗機(UV-ozone stripper)34
2.2.2 恆電位儀(Potentiostat)35
2.2.3脈衝雷射(Pulsed laser)35
2.2.4 光學顯微鏡(Optical microscope,OM)36
2.2.5 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 36
2.2.6 X光繞射技術(X-ray diffraction, XRD)37
2.2.7 X射線光電子能譜(X-ray photoelectron spectrscopy, XPS) 37
2.3 實驗流程38
2.4 實驗製程39
2.4.1 多孔鎳基板製作39
2.4.2 試片前置處理39
2.4.3 脈衝雷射鍛燒法製程參數設置40
2.4.4 脈衝雷射鍛燒法製備高熵活性物質41
2.4.5 高溫爐熱裂解法製備高熵活性物質41
2.4.6 電化學系統42
第三章 結果與討論43
3.1 壓錠多孔鎳與商用發泡鎳之基板分析43
3.1.1 掃描電子顯微鏡分析(SEM)43
3.1.2 X射線光電子能譜分析(XPS)45
3.1.3 電化學分析47
3.2於壓錠多孔鎳表面生成HEO、MnFexOy、FexOy活性物質之分析50
3.2.1 掃描電子顯微鏡分析(SEM)50
3.2.2 X光繞射技術(X-Ray diffraction, XRD)50
3.2.3 電化學分析52
3.3脈衝雷射鍛燒法與高溫熱裂解法製作高熵氧化物55
3.3.1掃描電子顯微鏡分析(SEM)55
3.3.2 X光繞射技術(X-Ray diffraction, XRD)55
3.3.3電化學分析56
第四章 結論61
第五章 參考文獻62
參考文獻 1.Dubal, Deepak P., et al., “Nickel cobaltite as an emerging material for supercapacitors: an overview”, Nano Energy, Vol 11, pp. 377-399, 2015.
2.林廣承, 丁志明, 張仍奎., “超級電池超級在哪裡”, 科學發展, Vol 564, pp. 21-25, 2019.
3.Wang, Yan, et al., “Mesoporous transition metal oxides for supercapacitors”, Nanomaterials, Vol 5, pp. 1667-1689, 2015.
4.Yu, Aiping, Victor Chabot, and Jiujun Zhang., “Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications”, Taylor & Francis, 2013.
5.Helmholtz, H. von., “Studien über electrische Grenzschichten”, Annalen der Physik, Vol 243, pp. 337-382, 1879.
6.Simon, Patrice, and Yury Gogotsi., “Materials for electrochemical capacitors”, Nanoscience technology: a collection of reviews from Nature journals, Vol, pp. 320-329, 2010.
7.González, Ander, et al., “Review on supercapacitors : Technologies and materials”, Renewable and Sustainable Energy Reviews, Vol 58, pp. 1189-1206, 2016.
8.Vangari, Manisha, Tonya Pryor, and Li Jiang., “Supercapacitors: review of materials and fabrication methods”, Journal of Energy Engineering, Vol 139, pp. 72-79, 2013.
9.Kamila, Swagatika, Bikash Kumar Jena, and Suddhasatwa Basu., “Advances in Electrochemical Energy Storage Device: Supercapacitor”, Energy Storage, pp. 119-148, 2021.
10.Burt, Ryan, Greg Birkett, and X. S. Zhao., “A review of molecular modelling of electric double layer capacitors”, Phys. Chem. Chem. Phys, Vol 16(14), pp. 6519-6538, 2014.
11.Iro, Zaharaddeen S., C. Subramani, and S. S. Dash., “A brief review on electrode materials for supercapacitor”, Int. J. Electrochem. Sci, Vol 11(12), pp. 10628-10643, 2016.
12.Sharma, Pawan, and T. S. Bhatti., “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, Vol 51(12), pp. 2901-2912, 2010.
13.Wang, Rui, Minjie Yao, and Zhiqiang Niu., “Smart supercapacitors from materials to devices”, InfoMat, Vol 2(1), pp. 113-125, 2020.
14.Fleischmann, Simon, et al., “Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials”, Chemical Reviews, Vol 120(14), pp. 6738-6782, 2020.
15.F Muzaffar, Aqib, et al., “A review on recent advances in hybrid supercapacitors: Design, fabrication and applications”, Renewable and Sustainable Energy Reviews, Vol 101, pp. 123-145, 2019.
16.Zhang, Yong, et al., “Progress of electrochemical capacitor electrode materials: A review”, International Journal of Hydrogen Energy, Vol 34(11), pp. 4889-4899, 2009.
17.Liu, Yu, San Ping Jiang, and Zongping Shao., “Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development”, Materials Today Advances, Vol 7, pp. 100072, 2020.
18.Shen, Caiwei, et al., “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources, Vol 234, pp. 302-309, 2013.
19.Schranger, Horst, Farshad Barzegar, and Qamar Abbas., “Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects”, Current Opinion in Electrochemistry, Vol 21, pp. 167-174, 2020.
20.Sridhar, Deepak., “Carbon-nanofiber electrodes directly grown on a nickel foam current collector for electrochemical energy storage devices”, McGill University (Canada), 2020.
21.Zhong, Cheng, et al., “A review of electrolyte materials and compositions for electrochemical supercapacitors”, Chemical Society Reviews, Vol 44, pp. 7484-7539, 2015.
22.Iqbal, Muhammad Zahir, Sana Zakar, and Syed Shabhi Haider., “Role of aqueous electrolytes on the performance of electrochemical energy storage device”, Journal of Electroanalytical Chemistry, Vol 858, pp. 113793, 2020.
23.Pal, Bhupender, et al., “Electrolyte selection for supercapacitive devices: a critical review”, Nanoscale Advances, Vol 1(10), pp. 3807-3835, 2019.
24.Zhao, Cuimei, and Weitao Zheng., “A review for aqueous electrochemical supercapacitors”, Frontiers in Energy Research, Vol 3, pp. 23, 2015.
25.Verma, Kapil Dev, et al., “Characteristics of Current Collector Materials for Supercapacitors”, In: Kar, K. (eds) Handbook of Nanocomposite Supercapacitor Materials I. Springer Series in Materials Science, Vol 300, 2020.
26.Yang, Gui Fu, Kyung Yup Song, and Seung Ki Joo., “A metal foam as a current collector for high power and high capacity lithium iron phosphate batteries”, Journal of Materials Chemistry A, Vol 2, pp. 19648-19652, 2014.
27.Ebrahim, Rabi, Mukhtar Yeleuov, and Alex Ignatiev., “3D Porous Nickel anode for low temperature thin solid oxide fuel cell applications”, Advanced Materials Technologies, Vol 2(10), pp. 1700098, 2017.
28.吳明柔, 李勝偉.,“雷射輔助製作微型多孔發泡鎳固態超級電容器”, 國立中央大學大專生科技部研究計畫, 2022.
29.Liu, Chenguang, et al., “Graphene-based supercapacitor with an ultrahigh energy density”, Nano letters, Vol 10, pp. 4863-4868, 2010.
30.Wu, Zhong-Shuai, et al., “Graphene/metal oxide composite electrode materials for energy storage”, Nano Energy, Vol 1, pp. 107-131, 2012.
31.Jiang, Junhua, et al., “Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes”, Electrochimica Acta, Vol 113, pp. 481-489, 2013.
32.Thambidurai, Adinaveen, et al., “Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation”, Korean Journal of Chemical Engineering, Vol 31, pp. 268-275, 2014.
33.Pekala, R. W., et al., “Carbon aerogels for electrochemical applications”, Journal of non-crystalline solids, Vol 225, pp. 74-80, 1998.
34.Niu, Chunming, et al., “High power electrochemical capacitors based on carbon nanotube electrodes”, Applied physics letters, Vol 70, pp. 1480-1482, 1997.
35.Wang, Guoping, Lei Zhang, and Jiujun Zhang., “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, Vol 41, pp. 797-828, 2012.
36.Shown, Indrajit, et al., “Conducting polymer‐based flexible supercapacitor”, Energy Science Engineering, Vol 3, pp. 2-26, 2015.
37.LibreTexts CHEMISTRY, https://chem.libretexts.org/Bookshelves/Inorganic
_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/3_d-Block_Elements/1b_Properties_of_Transition_Metals/Oxidation_States_of_Transition_Metals.
38.Deka, Sasanka., “Nanostructured mixed transition metal oxide spinels for supercapacitor applications,” Dalton Transactions, Vol 52(4), pp. 839-856, 2023.
39.Zeng, Xue, et al., “Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties,” Nanoscale, Vol 9(22), pp. 7493-7500, 2017.
40.Tang, Xiao, et al., “Hierarchical Fe3O4@ Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors,” ACS applied materials & interfaces, Vol 7(49), pp. 27518-27525, 2015.
41.Amiri, Azadeh, and Reza Shahbazian-Yassar., “Recent progress of high-entropy materials for energy storage and conversion”, Journal of Materials Chemistry A, Vol 9(2), pp. 782-823, 2021.
42.Rost, Christina M., et al, “Entropy-stabilized oxides”, Nature communications, Vol 6(1), pp. 8485, 2015.
43.Talluri, Bhusankar, et al, “High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material”, Journal of Energy Storage, Vol 42, pp. 103004, 2021.
44.Zhang, Dewen, et al, “High-Entropy Oxides Prepared by Dealloying Method for Supercapacitors”, ACS Applied Engineering Materials, Vol 1(2), pp. 780-789, 2023.
45.Yang, Jie Xiang, et al, “Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions”, ACS nano, Vol 15(7), pp. 12324-12333, 2021.
46.Raza, Waseem, et al, “Recent advancements in supercapacitor technology”, Nano Energy, Vol 52, pp. 441-473, 2018.
47.Chen, Shen-Ming, et al. “Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review”, Int. J. Electrochem. Sci, Vol 9, pp. 4072-4085, 2014.
48.Beguin, F and E. Frackowiak., “超級電容器:材料、系統及應用”, 機械工業出版, Vol, 2014.
49.Yu, Dingshan, et al., “Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage”, Nature nanotechnology, Vol 9, pp. 555, 2014.
50.Kötz, Rüdiger, and M. J. E. A. Carlen., “Principles and applications of electrochemical capacitors”, Electrochimica acta, Vol 45, pp. 2483-2498, 2000.
51.Liu, Xi-Miao, et al, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte”, New Carbon Materials, Vol 22, pp. 153-158, 2007.
52.Zaidi, Warda, et al., “Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors”, The Journal of Physical Chemistry C, Vol 118, pp. 4033-4042, 2014.
53.黃博, 孫現眾, 張熊, 張大成, 馬衍偉., “活性炭基軟包裝超級電容器用有機電解液”, 物理化學學报, Vol 29, pp. 1998-2004, 2013.
54.汎達科技有限公司., “UVO-Cleaner 紫外光加臭氧清洗機”, https://www.pentad.com.tw/product/61.
55.李姿儀.,“奈秒脈衝光纖雷射之精密深刻”, 機械工業雜誌, Vol, pp. 34-41, 2018.
56.Jin, Tian, et al., “Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy”, Advanced materials, Vol 30(23), pp. 1707512, 2018.
57.Yiliang, Wang, et al., “Facile synthesis and supercapacitor performance of M3O4(M= FeCoCrMnMg) high entropy oxide powders”, Journal of Inorganic Materials, Vol 36(4), pp. 425-430, 2021.
58.Meng, Guo, et al., “Preparation and Electrical Properties of High Entropy La (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O-3 Perovskite Ceramics Powder”, Journal of Inorganic Materials, Vol 36(4), pp. 431-435, 2021.
59.Liang, Bingliang, et al., “Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance”, Materials, Vol 13(24), pp. 5798, 2020.
60.Yin, Yi, et al., “Low Dimensional High Entropy Oxide (FeCoCrMnNi)3O4 for Supercapacitor Application”, Dalton Transactions, 2023.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明