參考文獻 |
1.Dubal, Deepak P., et al., “Nickel cobaltite as an emerging material for supercapacitors: an overview”, Nano Energy, Vol 11, pp. 377-399, 2015.
2.林廣承, 丁志明, 張仍奎., “超級電池超級在哪裡”, 科學發展, Vol 564, pp. 21-25, 2019.
3.Wang, Yan, et al., “Mesoporous transition metal oxides for supercapacitors”, Nanomaterials, Vol 5, pp. 1667-1689, 2015.
4.Yu, Aiping, Victor Chabot, and Jiujun Zhang., “Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications”, Taylor & Francis, 2013.
5.Helmholtz, H. von., “Studien über electrische Grenzschichten”, Annalen der Physik, Vol 243, pp. 337-382, 1879.
6.Simon, Patrice, and Yury Gogotsi., “Materials for electrochemical capacitors”, Nanoscience technology: a collection of reviews from Nature journals, Vol, pp. 320-329, 2010.
7.González, Ander, et al., “Review on supercapacitors : Technologies and materials”, Renewable and Sustainable Energy Reviews, Vol 58, pp. 1189-1206, 2016.
8.Vangari, Manisha, Tonya Pryor, and Li Jiang., “Supercapacitors: review of materials and fabrication methods”, Journal of Energy Engineering, Vol 139, pp. 72-79, 2013.
9.Kamila, Swagatika, Bikash Kumar Jena, and Suddhasatwa Basu., “Advances in Electrochemical Energy Storage Device: Supercapacitor”, Energy Storage, pp. 119-148, 2021.
10.Burt, Ryan, Greg Birkett, and X. S. Zhao., “A review of molecular modelling of electric double layer capacitors”, Phys. Chem. Chem. Phys, Vol 16(14), pp. 6519-6538, 2014.
11.Iro, Zaharaddeen S., C. Subramani, and S. S. Dash., “A brief review on electrode materials for supercapacitor”, Int. J. Electrochem. Sci, Vol 11(12), pp. 10628-10643, 2016.
12.Sharma, Pawan, and T. S. Bhatti., “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, Vol 51(12), pp. 2901-2912, 2010.
13.Wang, Rui, Minjie Yao, and Zhiqiang Niu., “Smart supercapacitors from materials to devices”, InfoMat, Vol 2(1), pp. 113-125, 2020.
14.Fleischmann, Simon, et al., “Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials”, Chemical Reviews, Vol 120(14), pp. 6738-6782, 2020.
15.F Muzaffar, Aqib, et al., “A review on recent advances in hybrid supercapacitors: Design, fabrication and applications”, Renewable and Sustainable Energy Reviews, Vol 101, pp. 123-145, 2019.
16.Zhang, Yong, et al., “Progress of electrochemical capacitor electrode materials: A review”, International Journal of Hydrogen Energy, Vol 34(11), pp. 4889-4899, 2009.
17.Liu, Yu, San Ping Jiang, and Zongping Shao., “Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development”, Materials Today Advances, Vol 7, pp. 100072, 2020.
18.Shen, Caiwei, et al., “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources, Vol 234, pp. 302-309, 2013.
19.Schranger, Horst, Farshad Barzegar, and Qamar Abbas., “Hybrid electrochemical capacitors in aqueous electrolytes: Challenges and prospects”, Current Opinion in Electrochemistry, Vol 21, pp. 167-174, 2020.
20.Sridhar, Deepak., “Carbon-nanofiber electrodes directly grown on a nickel foam current collector for electrochemical energy storage devices”, McGill University (Canada), 2020.
21.Zhong, Cheng, et al., “A review of electrolyte materials and compositions for electrochemical supercapacitors”, Chemical Society Reviews, Vol 44, pp. 7484-7539, 2015.
22.Iqbal, Muhammad Zahir, Sana Zakar, and Syed Shabhi Haider., “Role of aqueous electrolytes on the performance of electrochemical energy storage device”, Journal of Electroanalytical Chemistry, Vol 858, pp. 113793, 2020.
23.Pal, Bhupender, et al., “Electrolyte selection for supercapacitive devices: a critical review”, Nanoscale Advances, Vol 1(10), pp. 3807-3835, 2019.
24.Zhao, Cuimei, and Weitao Zheng., “A review for aqueous electrochemical supercapacitors”, Frontiers in Energy Research, Vol 3, pp. 23, 2015.
25.Verma, Kapil Dev, et al., “Characteristics of Current Collector Materials for Supercapacitors”, In: Kar, K. (eds) Handbook of Nanocomposite Supercapacitor Materials I. Springer Series in Materials Science, Vol 300, 2020.
26.Yang, Gui Fu, Kyung Yup Song, and Seung Ki Joo., “A metal foam as a current collector for high power and high capacity lithium iron phosphate batteries”, Journal of Materials Chemistry A, Vol 2, pp. 19648-19652, 2014.
27.Ebrahim, Rabi, Mukhtar Yeleuov, and Alex Ignatiev., “3D Porous Nickel anode for low temperature thin solid oxide fuel cell applications”, Advanced Materials Technologies, Vol 2(10), pp. 1700098, 2017.
28.吳明柔, 李勝偉.,“雷射輔助製作微型多孔發泡鎳固態超級電容器”, 國立中央大學大專生科技部研究計畫, 2022.
29.Liu, Chenguang, et al., “Graphene-based supercapacitor with an ultrahigh energy density”, Nano letters, Vol 10, pp. 4863-4868, 2010.
30.Wu, Zhong-Shuai, et al., “Graphene/metal oxide composite electrode materials for energy storage”, Nano Energy, Vol 1, pp. 107-131, 2012.
31.Jiang, Junhua, et al., “Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes”, Electrochimica Acta, Vol 113, pp. 481-489, 2013.
32.Thambidurai, Adinaveen, et al., “Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation”, Korean Journal of Chemical Engineering, Vol 31, pp. 268-275, 2014.
33.Pekala, R. W., et al., “Carbon aerogels for electrochemical applications”, Journal of non-crystalline solids, Vol 225, pp. 74-80, 1998.
34.Niu, Chunming, et al., “High power electrochemical capacitors based on carbon nanotube electrodes”, Applied physics letters, Vol 70, pp. 1480-1482, 1997.
35.Wang, Guoping, Lei Zhang, and Jiujun Zhang., “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, Vol 41, pp. 797-828, 2012.
36.Shown, Indrajit, et al., “Conducting polymer‐based flexible supercapacitor”, Energy Science Engineering, Vol 3, pp. 2-26, 2015.
37.LibreTexts CHEMISTRY, https://chem.libretexts.org/Bookshelves/Inorganic
_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/3_d-Block_Elements/1b_Properties_of_Transition_Metals/Oxidation_States_of_Transition_Metals.
38.Deka, Sasanka., “Nanostructured mixed transition metal oxide spinels for supercapacitor applications,” Dalton Transactions, Vol 52(4), pp. 839-856, 2023.
39.Zeng, Xue, et al., “Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties,” Nanoscale, Vol 9(22), pp. 7493-7500, 2017.
40.Tang, Xiao, et al., “Hierarchical Fe3O4@ Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors,” ACS applied materials & interfaces, Vol 7(49), pp. 27518-27525, 2015.
41.Amiri, Azadeh, and Reza Shahbazian-Yassar., “Recent progress of high-entropy materials for energy storage and conversion”, Journal of Materials Chemistry A, Vol 9(2), pp. 782-823, 2021.
42.Rost, Christina M., et al, “Entropy-stabilized oxides”, Nature communications, Vol 6(1), pp. 8485, 2015.
43.Talluri, Bhusankar, et al, “High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material”, Journal of Energy Storage, Vol 42, pp. 103004, 2021.
44.Zhang, Dewen, et al, “High-Entropy Oxides Prepared by Dealloying Method for Supercapacitors”, ACS Applied Engineering Materials, Vol 1(2), pp. 780-789, 2023.
45.Yang, Jie Xiang, et al, “Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions”, ACS nano, Vol 15(7), pp. 12324-12333, 2021.
46.Raza, Waseem, et al, “Recent advancements in supercapacitor technology”, Nano Energy, Vol 52, pp. 441-473, 2018.
47.Chen, Shen-Ming, et al. “Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review”, Int. J. Electrochem. Sci, Vol 9, pp. 4072-4085, 2014.
48.Beguin, F and E. Frackowiak., “超級電容器:材料、系統及應用”, 機械工業出版, Vol, 2014.
49.Yu, Dingshan, et al., “Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage”, Nature nanotechnology, Vol 9, pp. 555, 2014.
50.Kötz, Rüdiger, and M. J. E. A. Carlen., “Principles and applications of electrochemical capacitors”, Electrochimica acta, Vol 45, pp. 2483-2498, 2000.
51.Liu, Xi-Miao, et al, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte”, New Carbon Materials, Vol 22, pp. 153-158, 2007.
52.Zaidi, Warda, et al., “Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors”, The Journal of Physical Chemistry C, Vol 118, pp. 4033-4042, 2014.
53.黃博, 孫現眾, 張熊, 張大成, 馬衍偉., “活性炭基軟包裝超級電容器用有機電解液”, 物理化學學报, Vol 29, pp. 1998-2004, 2013.
54.汎達科技有限公司., “UVO-Cleaner 紫外光加臭氧清洗機”, https://www.pentad.com.tw/product/61.
55.李姿儀.,“奈秒脈衝光纖雷射之精密深刻”, 機械工業雜誌, Vol, pp. 34-41, 2018.
56.Jin, Tian, et al., “Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy”, Advanced materials, Vol 30(23), pp. 1707512, 2018.
57.Yiliang, Wang, et al., “Facile synthesis and supercapacitor performance of M3O4(M= FeCoCrMnMg) high entropy oxide powders”, Journal of Inorganic Materials, Vol 36(4), pp. 425-430, 2021.
58.Meng, Guo, et al., “Preparation and Electrical Properties of High Entropy La (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O-3 Perovskite Ceramics Powder”, Journal of Inorganic Materials, Vol 36(4), pp. 431-435, 2021.
59.Liang, Bingliang, et al., “Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance”, Materials, Vol 13(24), pp. 5798, 2020.
60.Yin, Yi, et al., “Low Dimensional High Entropy Oxide (FeCoCrMnNi)3O4 for Supercapacitor Application”, Dalton Transactions, 2023. |