博碩士論文 109329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.218.99.80
姓名 賴泊叡(Bo-Ruei Lai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 自分層電解質之形成於固態氧化物燃料電池之應用研究
(Research on the self-formed BCZY electrolyte for proton-conducting solid oxide fuel cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究中,我們透過改變電解質之組成比例,以及透過優化製備電解質粉末等方法,對電解質進行改良。首先,我們改變電解質中BCZY與NiO之重量比,然後採用奈米球磨技術細化用於旋轉塗布漿料中之粉末粒徑。而後,在燒結過程中,細化之BCZY粉末將擴散至電解質之最表層,形成緻密薄膜,我們稱此現象為自分層現象。
最後,我們測試電池的性能。並根據性能曲線、電化學阻抗譜(EIS)和SEM圖像分析,我們可以了解電池的結構情況,並加以推測電池性能優劣的原因。經過分析,我們發現塗布2層奈米自分層電解質(35 wt% NiO-BCZY)之電池具有最佳性能。在800℃工作溫度下,此電池之最大功率密度為446.2 mW/cm2,並且其歐姆阻抗和極化阻抗值均低於標準奈米電解質(3 wt% NiO-BCZY)電池之值。 美中不足的是,經過24小時長期穩定性測試,電池之衰減率為17.43%。在之後的工作中,降低自分層電解質電池之衰減率是一個可行的目標。
摘要(英) In this study, we improve the electrolyte by changing the composition ratio of the powder and optimizing the preparation of the electrolyte powder. First, we varied the weight ratio of BCZY to NiO in the electrolyte, and then used nano-ball-milling method to refine the particle size of the powder in the the spin-coating slurry. Continuously, during the sintering process, the refined BCZY particles in the improved electrolyte will diffuse to the outermost layer and form a dense film, which is called self-formed electrolyte.
Finally, we test the performance of the cell. According to the analysis on the performance curve, electrochemical impedance spectroscopy (EIS), and SEM images, we can understand the structure of the fuel cells and speculate the reasons for the performance of the cells. After we analyze the experimental results, we observed that the cell with 2 layers of self-formed electrolyte (35 wt% NiO-BCZY) film whose powder is refined by nano-ball-milling has the best performance. At the operating temperature of 800 ℃, the cell has the maximum power density of 446.2 mW/cm2, and it has lower value of the ohmic impedance and polarization impedance than the cell with standard electrolyte(3 wt% NiO-BCZY). Imperfectly, after 24-hour long-term stability test, the decay rate of the cell is 17.43 %. In the future work, it is a great goal to decreasing the decay rate of cell with self-layered electrolyte.
關鍵字(中) ★ 自分層電解質
★ 表面能
★ 奈米球磨技術
★ 長時間穩定性
關鍵字(英) ★ self-formed electrolyte
★ surface energy
★ nano-ball-milling technology
★ long-term stability
論文目次 目錄
摘要………………..………………..……..…………..………………..…...v
Abstract………..………………..………………..………………..…..........vi
致謝………..………………..………………..………………..…...............vii
目錄…..……..………………..………………..………………..................viii
圖目錄……..………………..………………..………………......................xi
表目錄…..………………..………………..………………..…..................xiii
前言…..………………..………………..………………..….........................1
第一章、實驗原理與文獻回顧……..………………..…...............................2
1.1. 固態氧化物燃料電池(SOFC) ..………………..…...............................2
1.1.1. SOFC之原理..…………………………...…...............................2
1.1.2. SOFC之優點..…………………………...…...............................4
1.1.3. SOFC之結構..…………………………...…...............................5
1.2. SOFC之電解質材料..…………………………..…...............................7
1.2.1. 鈣鈦礦(Perovskite)結構………………..…................................7
1.2.2. 質子傳輸型電解質…………………..……................................8
1.2.3. 質子傳輸機制………………….…….……..............................10
1.3. SOFC粉末之合成方法……………….…….……...............................11
1.3.1. 固態反應法(Solid-state reaction) ….……................................11
1.3.2. 水熱法(Hydrothermal method) .…….……...............................12
1.3.3. 溶膠-凝膠法(Sol-gel method) .…….……................................12
1.3.4. 燃燒法(Combustion) .…….…….......…..…..............................12

1.4. SOFC之電池製程…………….….…….......…..…..............................13
1.4.1. 乾壓成型技術(Die-pressing technique) ..….............................13
1.4.2. 刮刀成型技術(Tape-casting technique) ..….............................13
1.4.3. 旋轉塗佈技術(Spin-coating technique) ..….............................14
1.4.4. 雷射脈衝沉積技術(Pulsed-laser deposition, PLD) .................14
1.5. 粉末燒結理論…………….……...…….......…..…..............................15
1.5.1. 燒結過程………….……...…….......…..…...............................15
1.6. 自分層電解質之擴散機制……...…….......…..…...............................16
1.6.1. 自分層電解質粉末之成分及擴散機制………........................16
1.7. 電化學分析原理………….……...…….......…..…..............................18
1.7.1. 極化曲線(I-V curve)之原理…….......…..….............................18
1.7.2. 電化學交流阻抗原理…….......…..….......................................21
1.7.3. 擬合等效電路簡介………….….......…..…..............................22
第二章、實驗方法………….….......…..…...................................................23
2.1. 實驗藥品………….……………………......…..…..............................23
2.2. 實驗方法與流程….……………………......…..…..............................24
2.2.1. BaCe0.6Zr0.2Y0.2O3-δ (BCZY622)陶瓷粉末之製備.....................24 2.2.2. 乾壓成型技術製備陽極粉末與基板…..…..............................24
2.2.3. 旋轉塗布所需粉末之製備……......…..…................................25
2.2.4. 陽極支撐半電池之製備…………......…..…............................25
2.2.5. 陰極與極電層之製備…………......…..……............................27
2.3. 材料性質分析……….................................…..……............................27
2.3.1. X-ray粉末繞射分析儀(X-ray diffraction, XRD) ......................27
2.3.2. 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) ....28
2.4. 單電池I-V性能量測................................…..……..............................29
2.5. 電化學交流阻抗分析..................................…….................................29第三章、結果與討論................................…..…….......................................30
3.1. 全電池材料之相分析......................…..…….......................................30
3.1.1. 煆燒電解質粉末(BCZY622)之相分析.....................................30
3.1.2.電池材料之相分析.................…..…….......................................31
3.2. 微結構分析.................…..…………………........................................33
3.2.1自分層電解質半電池表面之微結構分析..................................33
3.2.2自分層電解質半電池截面之微結構分析..................................35
3.3. 全電池I-V性能曲線測量與分析…………........................................37
3.4. 全電池之EIS測量與分析…………....................................................39
3.5. 全電池之穩定性分析………………...................................................41
第四章、結論………………………..……...................................................43
參考文獻…………..………………..……...................................................44

圖目錄
圖1.1:P-SOFC操作原理。……….............................................................4
圖1.2:O-SOFC操作原理。……….............................................................4
圖1.3:鈣鈦礦晶體結構圖(ABO3) [14]。...................................................7
圖1.4:鈣鈦礦氧化物質子傳導率比較圖[18]。.......................................10
圖1.5:質子於鈣鈦礦結構中傳導之示意圖[23]。...................................11
圖1.6:乾壓成型技術示意圖。……...........................................................13
圖1.7:刮刀成型技術示意圖。……..........................................................14
圖1.8:旋轉塗佈技術之示意圖。…..........................................................14
圖1.9:雷射脈衝沉積技術示意圖。..........................................................15
圖1.10:燒結過程(a)初期階段;(b)中期階段;(c)末期階段。..............16
圖1.11:理想與實際之燃料電池極化曲線圖[41]。.................................20
圖1.12:電化學阻抗複數平面示意圖(a)奈奎斯特圖(Nyquist plot);(b)Bode
plot;(c)相角圖(phase angle plot) [43]。.........................................22
圖2.1:BCZY622粉末合成流程。............................................................24
圖2.2:旋轉塗布所需粉末之合成流程。..................................................25
圖2.3:旋轉塗布薄膜技術示意圖。..........................................................26
圖2.4:陰極與集電層之製備流程圖。......................................................27
圖2.5:布拉格繞射原理及示意圖。..........................................................28
圖2.6:燃料電池測試平台示意圖。..........................................................29
圖3.1:電解質BCZY粉末經1250 ℃煆燒後之XRD圖。....................30
圖3.2:自分層電解質(35wt%NiO-BCZY)粉末之XRD圖。..................32
圖3.2:自分層電解質(35wt%NiO-BCZY)半電池之XRD圖。..............32
圖3.4:不同成份之奈米球磨電解質,經1400 ℃或1480 ℃燒結之SEM
表面圖。..........................................................................................34
圖3.5:不同成份之奈米球磨電解質,經1400 ℃或1480 ℃燒結之SEM
表面圖。..........................................................................................36
圖3.6:奈米球磨電解質電池I-V性能曲線圖。......................................38
圖3.7:全電池電化學阻抗分析結果。......................................................40
圖3.8:3層標準奈米球磨電解質1400 ℃燒結電池之24小時長時間性能
分析。................................................................................................42
圖3.9:2層自分層奈米球磨電解質1400 ℃燒結電池之24小時長時間性
能分析。.............................................................................................42

表目錄
表1.1:NiO之表面能。..............................................................................17
表1.2:BaCeO3之表面能。.........................................................................17
表1.3:BaZrO3之表面能。.........................................................................17
表1.4:BCZ31經計算之之表面能。..........................................................18
表1.5:常見等效電路元件。......................................................................22
表2.1:實驗藥品表。..................................................................................23
表2.2:3種旋轉塗布所需粉末。...............................................................25
表2.3:本實驗旋轉塗布漿料所需粉末。..................................................26
表3.1:半電池之結構參數。......................................................................33
參考文獻 參考文獻
[1] L. Jeffry, M.Y. Ong, S. Nomanbhay, M. Mofijur, M. Mubashir, P. Show, “Greenhouse gases utilization: A review”, Fuel, Vol. 301, pp. 121017,2021.
[2] W. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp.127-130, 1839.
[3] Y.A. Cengel, “Thermodynamics: An Engineering Approach, 7th Edition”, McGraw-Hill, USA, 2010.
[4] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review”, Prog. Mater. Sci., Vol. 72, pp. 141, 2015.
[5] X.F. Ye, B. Huang, S.R. Wang, Z.R. Wang, L. Xiong, T.L. Wen, “Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel”,J. Power Sources, Vol. 164, pp.203-209, 2007.
[6] R. Lan, S.W. Tao, “Ammonia carbonate fuel cells based on a mixed NH4+/H+ ion conducting electrolyte”, ECS Electrochem., Vol. 2, pp.F37, 2013.
[7] M.J. Escudero , I. Gómez de Parada , A. Fuerte, J.L. Serrano, “Analysis of the electrochemical performance of MoNi–CeO2 cermet as anode material for solid oxide fuel cell. Part I. H2, CH4 and H2/CH4 mixtures as fuels”, J. Power Sources, Vol. 253, pp. 64, 2014.
[8] A. Yaremchenko , B. Brinkmann, R. Janssen , J.R. Frade, “Electricalconductivity, thermal expansion and stability of Y-and Al-substituted SrVO3 as prospective SOFC anode material”, Solid State Ion., Vol. 247, pp. 88, 2013.
[9] C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, “Fabrication and characterization of an anode-supported hollow fiber SOFC”, J. Power Sources, Vol. 187, pp. 90, 2009.
[10] J. Gao, Z. Liu, M. Akbar, C. Gao, W. Dong, Y. Meng, X.Jin, C. Xia, B. Wang, B. Zhu, H. Wang, X. Wang, “Efficiently enhance the proton conductivity of YSZ-based electrolyte for low temperature solid oxide fuel cell”, Ceram. Int., Vol. 49, pp. 5637, 2023.
[11] T. Ishihara, J. Tabuchi, S. Ishikawa, J. Yan, M. Enoki, H. Matsumoto,“Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs”, Solid State Ion., Vol. 177, pp. 1949, 2006.
[12] D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu,“Enhancing SOFC cathode performance by surface modification through infiltration”,Energy Environ. Sci., Vol. 7, pp. 552-575, 2014.
[13] D. Rembelski, J.P. Viricelle, L. Combemale, M. Rieu,
“Characterization and Comparison of Different Cathode Materials for SC-SOFC: LSM, BSCF, SSC, and LSCF”,FC, Vol. 12, pp. 256, 2012.
[14] E. Fabbri, D. Pergolesi, E. Traversa, Chemical Society Reviews, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Vol. 39, pp. 4355-4369, 2010.
[15] D. Kuščer, J. Holc, M. Hrovat, D. Kolar, “Correlation between the defect structure, conductivity and chemical stability of La1–ySryFe1–xAlxO3–δ cathodes for SOFC”, J. Eur. Ceram, Vol. 21, pp. 1817, 2001.
[16] R. Lan, S.W. Tao, “Proton‐Conducting Materials as Electrolytes for Solid Oxide Fuel Cells”, Wiley Online Books, 2013.
[17] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chem. Soc. Rev., Vol. 39, pp. 4355, 2010.
[18] K.D. Kreuer, “Proton-Conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, 2003.
[19] T. Norby, Y. Larring, “Concentration and transport of protons in oxides”, Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-599, 1997.
[20] M.S. Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, J. Mater. Chem., Vol. 10, pp. 1027-1038, 2000.
[21] N. Agmon, Chemical Physics Letters, “The Grotthuss mechanism”, Vol. 244, pp. 456-462, 1995.
[23] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews, Vol. 39, pp. 4355-4369, 2010.
[24] W.G. Bessler, “A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models”, Solid State Ion., Vol. 176, pp. 997-1011, 2005.
[25] E. Niwa, C. Uematsu, E. Miyashita, T. Ohzeki, Takuya Hashimoto, “Low Temperature Preparation of LaNi1-xFexO3 as New Cathode Material for SOFC - Advantage of Liquid Phase Mixing Method”, ECS Trans., Vol. 35, pp. 1935, 2011.
[26] L. Garcia, D.A. Macedo, G.L. Souza, F.V. Motta, C.A. Paskocimas, R.M. Nascimento, “Citrate–hydrothermal synthesis, structure and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for IT-SOFCs”, Ceram. Int., Vol. 39, pp. 8385-8392, 2013.
[27] S. Wang, C. Yeh, Y. Wang, Y. Wu, “Characterization of samarium- doped ceria powders prepared by hydrothermal synthesis for use in solid state oxide fuel cells”, J. Mater. Res. Technol, Vol. 2, pp. 141-148, 2013.
[28] C.G. Lima, R.M. Silva, F.M. Aquino, B. Raveau, V. Caignaert, M.R. Cesário, D.A. Macedo, “Proteic sol-gel synthesis of copper doped misfit Ca-cobaltites with potential SOFC application”, Mater. Chem. Phys., Vol. 187,pp. 177-182, 2017.
[29] D.H. Prasad, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, “Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs”, J. Eur. Ceram, Vol. 28, pp. 3107-3112, 2008.
[30] Y. Inui, T. Matsumae, H. Koga, K. Nishiura, “High performance SOFC/GT combined power generation system with CO2 recovery by oxygen combustion method”, Energy Convers. Manag., Vol. 46, pp.1837-1847, 2005.
[31] A Ringuedé, J.A Labrincha, J.R Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes”, Solid State Ion., Vol. 141, pp. 549, 2001.
[32] M. Han, X. Du, Z. Liu, “Characterization of La0.8Sr0.2Co0.5Mn0.5O3-δ Coating on Alloy Interconnect in SOFC”, ECS Trans., Vol. 25, pp. 1379, 2009.
[33] X.J. Chen, S.H. Chan, K.A. Khor, “Cyclic voltammetry of (La,Sr)MnO3 electrode on YSZ substrate”, Solid State Ion., Vol. 164,pp. 17-25, 2003.
[34] W.S. Jang, S.H. Hyun, S.G. Kim, “Preparation of YSZ/YDC and YSZ/GDC composite electrolytes by the tape casting and sol-gel dip-drawing coating method for low-temperature SOFC”, J. Mater. Sci., Vol. 37, pp. 2535-2541, 2002.
[35] N. Shi, F. Su, D. Huan, Y. Xie, J. Lin, We. Tan, R. Peng, C. Xia, C. Chena, Y. Lu, “Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology”, J. Mater. Chem. A, Vol. 5, pp. 19664, 2017.
[36] X. Xu, C. Xia, S. Huang, D. Peng, “YSZ thin films deposited by spin-coating for IT-SOFCs”, Ceram. Int., Vol. 31, pp. 1161-1164, 2005.
[37] H.Y. Sun, W. Sen, W.H. Ma, J. Yu, J.J. Yang, “Fabrication of LSGM thin films on porous anode supports by slurry spin coating for IT-SOFC”, Rare Metals, Vol. 34, pp. 797-801, 2015.
[38] H.S. Noh, J.W. Son, H. Lee, H.I. Ji, J.H. Lee, H.W. Lee, “Suppression of Ni agglomeration in PLD fabricated Ni-YSZ composite for surface modification of SOFC anode”, J. Eur. Ceram, Vol. 30, pp. 3415-3423, 2010.
[39] M. Siebenhofer, C. Riedl, A. Schmid, A. Limbeck, A.K. Opitz, J.Fleig, Markus Kubicek, “Investigating oxygen reduction pathways on pristine SOFC cathode surfaces by in situ PLD impedance spectroscopy”, J. Mater. Chem. A, Vol. 10, pp. 2305-2319, 2022.
[40] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, J. Appl. Phys., Vol. 32, pp. 787, 1961.
[41] J. Xiang, B. Xiang, X. Cui, New J. Chem., “NiO nanoparticle surface energy studies using first principles calculations”, Vol. 42, pp. 10791-10797, 2018.
[42] I. Leonov, S. Biermann, “Electronic correlations at paramagnetic (001) and (110) NiO surfaces: Charge-transfer and Mott-Hubbard-type gaps at the surface and subsurface of (110) NiO”, Phys. Rev. B, Vol. 103, pp. 165108, 2021.
[43] M. Shishkin, T. Ziegler, “Structural, electronic, stability and reduction properties of perovskite surfaces: The case of rhombohedral BaCeO3”, Surf. Sci., Vol. 606, pp. 1078-1087, 2012.
[44] R.I. Eglitis, “First-principles calculations of BaZrO3(001) and (011) surfaces”, J. Phys.: Condens., Vol. 19, pp. 356004, 2007.
[45] Justin Ho, Eugene Heifets, Boris Merinov, “Ab initio simulation of the BaZrO3 (0 0 1) surface structure”, Surf. Sci., Vol. 601, pp. 490, 2007.
[46] R.I. Eglitis, Solid State Ion., “Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces”, Vol. 230, pp. 43-47, 2013.
[47] N.Y. Hsu, S.C. Yen, K.T. Jeng, C.C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, J. Power Sources, Vol. 161, pp. 232, 2006.
[48] E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn -Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute of Technology Zurich, 2008.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2023-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明