參考文獻 |
[1] Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S., Enhancement of red spectral emission intensity of Y3Al5O12: Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 2007, 126, 371-377.
[2] Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H., High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294-9302.
[3] Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H., Stability of quantum dots, quantum dot films, and quantum dot light‐emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.
[4] Jiang, X.; Fan, Z.; Luo, L.; Wang, L., Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes. Micromachines 2022, 13, 709.
[5] Berends, A. C.; de Mello Donega, C., Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit. J. Phys. Chem. Lett. 2017, 8, 4077-4090.
[6] Garcia de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H., Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz3541.
[7] Wang, Y. K.; Yuan, F.; Dong, Y.; Li, J. Y.; Johnston, A.; Chen, B.; Saidaminov, M. I.; Zhou, C.; Zheng, X.; Hou, Y.; Bertens, K.; Ebe, H.; Ma, D.; Deng, Z.; Yuan, S.; Chen, R.; Sagar, L. K.; Liu, J.; Fan, J.; Li, P.; Li, X.; Gao, Y.; Fung, M. K.; Lu, Z. H.; Bakr, O. M.; Liao, L. S.; Sargent, E. H., All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angew. Chem., Int. Ed. 2021, 60, 16164-16170.
[8] Dai, S.; Su, Y. S.; Chung, S. R.; Wang, K. W.; Pan, X., Controlling the magic size of white light-emitting CdSe quantum dots. Nanoscale 2018, 10, 10256-10261.
[9] Mora‐Seró, I., Current Challenges in the Development of Quantum Dot Sensitized Solar Cells. Adv. Energy Mater. 2020, 10, 2001774.
[10] Kim, M. R.; Ma, D., Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. J. Phys. Chem. Lett. 2015, 6, 85-99.
[11] Fan, F.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X.; Jain, A.; Quintero-Bermudez, R.; Saravanapavanantham, M.; Liu, M.; Korkusinski, M.; Hawrylak, P.; Klimov, V. I.; Rosenthal, S. J.; Hoogland, S.; Sargent, E. H., Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75-79.
[12] Thal, L. B.; Mann, V. R.; Sprinzen, D.; McBride, J. R.; Reid, K. R.; Tomlinson, I. D.; McMahon, D. G.; Cohen, B. E.; Rosenthal, S. J., Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater. Sci. 2020, 8, 837-845.
[13] Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96-99.
[14] Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634-638.
[15] Chen, H. S.; Chung, S. R.; Chen, Y. C.; Chen, T. Y.; Liu, C. Y.; Wang, K. W., The structure-dependent quantum yield of ZnCdS nanocrystals. CrystEngComm 2015, 17, 5032-5037.
[16] Dai, S.; Siao, C. B.; Chung, S. R.; Wang, K. W.; Pan, X., Developed one-pot synthesis of dual-color CdSe quantum dots for white light-emitting diode application. J. Mater. Chem. C 2018, 6, 3089-3096.
[17] Huber, D.; Reindl, M.; Huo, Y.; Huang, H.; Wildmann, J. S.; Schmidt, O. G.; Rastelli, A.; Trotta, R., Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 2017, 8, 15506.
[18] Kim, T.; Park, S.; Jeong, S., Diffusion dynamics controlled colloidal synthesis of highly monodisperse InAs nanocrystals. Nat. Commun. 2021, 12, 3013.
[19] Peng, Z.; Han, X.; Li, S.; Al-Youbi, A. O.; Bashammakh, A. S.; El-Shahawi, M. S.; Leblanc, R. M., Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev. 2017, 343, 256-277.
[20] Ferdous, R.; Kawakami, E.; Scarlino, P.; Nowak, M. P.; Ward, D. R.; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Friesen, M.; Eriksson, M. A.; Vandersypen, L. M. K.; Rahman, R., Valley dependent anisotropic spin splitting in silicon quantum dots. Npj Quantum Inf. 2018, 4, 26.
[21] Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[22] Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J., Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681-687.
[23] Sun, J. Y.; Rabouw, F. T.; Yang, X. F.; Huang, X. Y.; Jing, X. P.; Ye, S.; Zhang, Q. Y., Facile Two-Step Synthesis of All-Inorganic Perovskite CsPbX3 (X=Cl, Br, and I) Zeolite-Y Composite Phosphors for Potential Backlight Display Application. Adv. Funct. Mater. 2017, 27, 1704371.
[24] Yin, Y.; Hu, Z.; Ali, M. U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; Hou, J.; Fan, J.; Li, D.; Zhang, X.; Meng, H., Full‐Color Micro‐LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers. Adv. Mater. Technol. 2020, 5, 2000251.
[25] Hardman, R., A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165-172.
[26] Chen, N.; Bai, Z.; Wang, Z.; Ji, H.; Liu, R.; Cao, C.; Wang, H.; Jiang, F.; Zhong, H., P-119: Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs. SID Symposium Digest of Technical Papers 2018, 49, 1657-1659.
[27] Berends, A. C.; de Mello Donega, C., Ultrathin one-and two-dimensional colloidal semiconductor nanocrystals: pushing quantum confinement to the limit. J. Phys. Chem. Lett. 2017, 8, 4077-4090.
[28] García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H., Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.
[29] Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873-6890.
[30] Chen, B.; Li, D.; Wang, F., InP Quantum Dots: Synthesis and Lighting Applications. Small 2020, 16, e2002454.
[31] Rossetti, R.; Nakahara, S.; Brus, L. E., Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79, 1086-1088.
[32] Cui, Z.; Mei, S.; Wen, Z.; Yang, D.; Qin, S.; Xiong, Z.; Yang, B.; He, H.; Bao, R.; Qiu, Y.; Chen, Y.; Zhang, W.; Xie, F.; Xing, G.; Guo, R., Synergistic Effect of Halogen Ions and Shelling Temperature on Anion Exchange Induced Interfacial Restructuring for Highly Efficient Blue Emissive InP/ZnS Quantum Dots. Small 2022, 18, e2108120.
[33] Pu, Y. C.; Fan, H. C.; Chang, J. C.; Chen, Y. H.; Tseng, S. W., Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSexS1-x Core/Shell Quantum Dots. J. Phys. Chem. Lett. 2021, 12, 7194-7200.
[34] Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P., Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. J. Am. Chem. Soc. 2020, 142, 18897-18906.
[35] Mulder, J. T.; Kirkwood, N.; De Trizio, L.; Li, C.; Bals, S.; Manna, L.; Houtepen, A. J., Developing Lattice Matched ZnMgSe Shells on InZnP Quantum Dots for Phosphor Applications. ACS Appl. Nano Mater. 2020, 3, 3859-3867.
[36] Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS Core Multi‐Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Adv. Funct. Mater. 2021, 31, 2008453.
[37] Mićić, O.; Cheong, H.; Fu, H.; Zunger, A.; Sprague, J.; Mascarenhas, A.; Nozik, A., Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 1997, 101, 4904-4912.
[38] Chen, B.; Li, D.; Wang, F., InP quantum dots: synthesis and lighting applications. Small 2020, 16, 2002454.
[39] Kwon, S. G.; Hyeon, T., Formation mechanisms of uniform nanocrystals via hot‐injection and heat‐up methods. Small 2011, 7, 2685-2702.
[40] Van Embden, J.; Chesman, A. S.; Jasieniak, J. J., The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246-2285.
[41] Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B., Surface chemistry of InP quantum dots: a comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147-18157.
[42] Qu, L.; Peng, X., Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049-2055.
[43] Talapin, D. V.; Gaponik, N.; Borchert, H.; Rogach, A. L.; Haase, M.; Weller, H., Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B 2002, 106, 12659-12663.
[44] Bertrand, P., XPS study of chemically etched GaAs and InP. J. Vac. Sci. Technol. 1981, 18, 28-33.
[45] Calvin, J. J.; Swabeck, J. K.; Sedlak, A. B.; Kim, Y.; Jang, E.; Alivisatos, A. P., Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 2020, 142, 18897-18906.
[46] Stein, J. L.; Mader, E. A.; Cossairt, B. M., Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids. J. Phys. Chem. Lett. 2016, 7, 1315-1320.
[47] Jeong, B. G.; Chang, J. H.; Hahm, D.; Rhee, S.; Park, M.; Lee, S.; Kim, Y.; Shin, D.; Park, J. W.; Lee, C., Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 2022, 21, 246-252.
[48] Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P., InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale 2013, 5, 307-317.
[49] Song, J. H.; Choi, H.; Pham, H. T.; Jeong, S., Energy level tuned indium arsenide colloidal quantum dot films for efficient photovoltaics. Nat. Commun. 2018, 9, 4267.
[50] Kirkwood, N.; Monchen, J. O.; Crisp, R. W.; Grimaldi, G.; Bergstein, H. A.; Du Fossé, I.; Van Der Stam, W.; Infante, I.; Houtepen, A. J., Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 2018, 140, 15712-15723.
[51] Lim, J.; Park, M.; Bae, W. K.; Lee, D.; Lee, S.; Lee, C.; Char, K., Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 2013, 7, 9019-9026.
[52] Haubold, S.; Haase, M.; Kornowski, A.; Weller, H., Strongly luminescent InP/ZnS core-shell nanoparticles. Chemphyschem 2001, 2, 331-334.
[53] Adam, S.; Talapin, D.; Borchert, H.; Lobo, A.; McGinley, C.; De Castro, A.; Haase, M.; Weller, H.; Möller, T., The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J. Chem. Phys. 2005, 123, 084706.
[54] Hahm, D.; Chang, J. H.; Jeong, B. G.; Park, P.; Kim, J.; Lee, S.; Choi, J.; Kim, W. D.; Rhee, S.; Lim, J., Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 2019, 31, 3476-3484.
[55] Li, L.; Reiss, P., One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. Chem. Mater. 2008, 130, 11588-11589.
[56] Wang, H. C.; Zhang, H.; Chen, H. Y.; Yeh, H. C.; Tseng, M. R.; Chung, R. J.; Chen, S.; Liu, R. S., Cadmium‐Free InP/ZnSeS/ZnS Heterostructure‐Based Quantum Dot Light‐Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m−2. Small 2017, 13, 1603962.
[57] Ramasamy, P.; Kim, N.; Kang, Y. S.; Ramirez, O.; Lee, J. S., Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 2017, 29, 6893-6899.
[58] Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F. V.; Rabouw, F. T.; De Trizio, L.; Geuchies, J. J.; Mulder, J. T., Locating and controlling the Zn content in In(Zn)P quantum dots. Chem. Mater. 2019, 32, 557-565.
[59] Pietra, F.; De Trizio, L.; Hoekstra, A. W.; Renaud, N.; Prato, M.; Grozema, F. C.; Baesjou, P. J.; Koole, R.; Manna, L.; Houtepen, A. J., Tuning the lattice parameter of In X Zn Y P for highly luminescent lattice-matched core/shell quantum dots. Acs Nano 2016, 10, 4754-4762.
[60] Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z., Economic and Size-Tunable Synthesis of InP/ZnE (E=S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893-4898.
[61] Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W., Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light‐emitting Diodes. Adv. Mater. 2012, 24, 4180-4185.
[62] Thuy, U. T. D.; Reiss, P.; Liem, N. Q., Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 2010, 97, 193104.
[63] Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W. S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B., InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701-19708.
[64] Stein, J. L.; Holden, W. M.; Venkatesh, A.; Mundy, M. E.; Rossini, A. J.; Seidler, G. T.; Cossairt, B. M., Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy. Chem. Mater. 2018, 30, 6377-6388.
[65] Choi, Y.; Kim, D.; Shin, Y. S.; Lee, W.; Orr, S.; Kim, J. Y.; Park, J., Highly luminescent red-emitting In(Zn)P quantum dots using zinc oxo cluster: Synthesis and application to light-emitting diodes. Nanoscale 2022, 14, 2771-2779.
[66] Cho, H.; Jung, S.; Kim, M.; Kwon, H.; Bang, J., Effects of Zn impurity on the photoluminescence properties of InP quantum dots. J. Lumin. 2022, 245, 118647.
[67] Owen, J. S.; Chan, E. M.; Liu, H.; Alivisatos, A. P., Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J. Am. Chem. Soc. 2010, 132, 18206-18213.
[68] Abe, S.; Capek, R. K.; De Geyter, B.; Hens, Z., Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. Acs Nano 2013, 7, 943-949.
[69] Cui, Z.; Mei, S.; Wen, Z.; Yang, D.; Qin, S.; Xiong, Z.; Yang, B.; He, H.; Bao, R.; Qiu, Y., Synergistic effect of halogen ions and shelling temperature on anion exchange induced interfacial restructuring for highly efficient blue emissive InP/ZnS quantum dots. Small 2022, 18, 2108120.
[70] de Mello Donegá, C., Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512-1546.
[71] Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V., The surface science of nanocrystals. Nat. Mater. 2016, 15, 141-153.
[72] Pokrant, S.; Whaley, K. B., Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. Eur. Phys. J. D 1999, 6, 255-267.
[73] Inerbaev, T. M.; Masunov, A. E.; Khondaker, S. I.; Dobrinescu, A.; Plamadă, A.-V.; Kawazoe, Y., Quantum chemistry of quantum dots: Effects of ligands and oxidation. J. Chem. Phys. 2009, 131, 044106 .
[74] Lee, S.; Sagar, L. K.; Li, X.; Dong, Y.; Chen, B.; Gao, Y.; Ma, D.; Levina, L.; Grenville, A.; Hoogland, S., InP-quantum-dot-in-ZnS-matrix solids for thermal and air stability. Chem. Mater. 2020, 32, 9584-9590.
[75] Zhang, H.; Hu, N.; Zeng, Z.; Lin, Q.; Zhang, F.; Tang, A.; Jia, Y.; Li, L. S.; Shen, H.; Teng, F., High‐efficiency green InP quantum dot‐based electroluminescent device comprising thick‐shell quantum dots. Adv. Opt. Mater. 2019, 7, 1801602.
[76] Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X. W., Green InP/ZnSeS/ZnS core multi‐shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453.
[77] Yu, P.; Shan, Y.; Cao, S.; Hu, Y.; Li, Q.; Zeng, R.; Zou, B.; Wang, Y.; Zhao, J., Inorganic solid phosphorus precursor of sodium phosphaethynolate for synthesis of highly luminescent InP-based quantum dots. ACS Energy Lett. 2021, 6, 2697-2703.
[78] Yu, P.; Cao, S.; Shan, Y.; Bi, Y.; Hu, Y.; Zeng, R.; Zou, B.; Wang, Y.; Zhao, J., Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 2022, 11, 162.
[79] Yoon, S. Y.; Lee, Y. J.; Yang, H.; Jo, D. Y.; Kim, H. M.; Kim, Y.; Park, S. M.; Park, S.; Yang, H., Performance enhancement of InP quantum dot light-emitting diodes via a surface-functionalized ZnMgO electron transport layer. ACS Energy Lett. 2022, 7, 2247. |