博碩士論文 110522082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.119.115.113
姓名 張予瀞(Yu-Ching Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Network Anomaly Detection by Attentiongraph)
相關論文
★  Dynamic Overlay Construction for Mobile Target Detection in Wireless Sensor Networks★ 車輛導航的簡易繞路策略
★ 使用傳送端電壓改善定位★ 利用車輛分類建構車載網路上的虛擬骨幹
★ Why Topology-based Broadcast Algorithms Do Not Work Well in Heterogeneous Wireless Networks?★ 針對移動性目標物的有效率無線感測網路
★ 適用於無線隨意網路中以關節點為基礎的分散式拓樸控制方法★ A Review of Existing Web Frameworks
★ 將感測網路切割成貪婪區塊的分散式演算法★ 無線網路上Range-free的距離測量
★ Inferring Floor Plan from Trajectories★ An Indoor Collaborative Pedestrian Dead Reckoning System
★ Dynamic Content Adjustment In Mobile Ad Hoc Networks★ 以影像為基礎的定位系統
★ 大範圍無線感測網路下分散式資料壓縮收集演算法★ 車用WiFi網路中的碰撞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-7以後開放)
摘要(中) 隨著網路使用的頻率逐漸增加,日常生活中越來越多的的行為開始與網路掛勾,當網路發生異常情況時,將會對我們的生活影響劇烈。然而,造成網路異常的原因非常的多樣,如病毒入侵、硬件故障、網路攻擊等。在這篇論文中,我們將聚焦在網路流量方面的異常進行偵測,以及早發現問題並進行異常的排除。我們提出了一種集成了空間與時間的分析的模型(Attentiongraph)方法。Attentiongraph 結合了 Attention GRU 處理空間方面的特徵與 GCN 處理時間方面的特徵以發現流量中的異常。在兩個真實世界的數據集上面的實驗結果表明,Attentiongraph 優於目前最先進的模型,達成了更高的準確性
摘要(英) As Internet services become more prevalent and ubiquitous today, our daily lives gradually depend on a stable and reliable Internet connection. Therefore, we will be prone to significant inconvenience when anomalous network events occur. To avoid this problem, it is crucial that we detect and resolve any network anomaly in a timely manner. In this thesis, we propose a system, named Attentiongraph, that utilizes both spatial and temporal features to detect network anomalies. To maximize the success of anomaly detection, Attentiongraph integrates the Attention mechanism, Attention GRU, and GCN into the system in the right order. To mitigate the data imbalance problem that is common in anomaly detection research, Negative Edge Selection is applied to ensure the model training stability. Experimental results on two real-world network datasets show that Attentiongraph is superior to current state-of-the-art deep learning anomaly detection models in terms of the AUC score.
關鍵字(中) ★ 異常偵測
★ 深度學習
★ 注意力機制
★ 動態圖
關鍵字(英) ★ anomaly detection
★ deep learning
★ attention
★ dynamic graph
論文目次 1 Introduction 1
2 Related Work 4
2.1 Machine Learning-based Anomaly Detection . . . . . . . . . . . . . . . . . 4
2.2 Deep Learning-based Anomaly Detection . . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Addgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Temporal Graph Convolution Neural Network . . . . . . . . . . . . 8
3.1.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Selective Negative Sampling . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Attention GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Design 11
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4.1 Packet Preprocessing Module . . . . . . . . . . . . . . . . . . . . . 13
4.4.2 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.3 Training Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Performance 23
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 26
5.5.1 Single Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.2 Multiple Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.6 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6.1 Attention GRU vs. GRU . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6.2 Spatial-Temporal Questions . . . . . . . . . . . . . . . . . . . . . . 30
6 Conclusion 31
參考文獻 [1] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Mining, KDD ’18, page 2672–2681, New York, NY, USA, 2018. Association for Computing Machinery.
[2] Dhivya Eswaran and Christos Faloutsos. Sedanspot: Detecting anomalies in edge streams. In 2018 IEEE International Conference on Data Mining (ICDM), pages 953–958, 2018.
[3] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. Spotlight: Detecting anomalies in streaming graphs. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery amp; Data Mining, KDD ’18, page 1378–1386, New York, NY, USA, 2018. Association for Computing Machinery.
[4] Yen-Yu Chang, Pan Li, Rok Sosic, M. H. Afifi, Marco Schweighauser, and Jure Leskovec. F-fade: Frequency factorization for anomaly detection in edge streams. arXiv preprint arXiv: Arxiv-2011.04723, 2020.
[5] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos. Midas: Microcluster-based detector of anomalies in edge streams. In The ThirtyFourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3242–3249. AAAI Press, 2020.
[6] Xingzhi Guo, Baojian Zhou, and Steven Skiena. Subset node anomaly tracking over large dynamic graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 475–485, New York, NY, USA, 2022. Association for Computing Machinery.
[7] Rui Liu, Siddharth Bhatia, and Bryan Hooi. Isconna: Streaming anomaly detection with frequency and patterns. arXiv preprint arXiv: Arxiv-2104.01632, 2021.
[8] Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S. Yu, and Bryan Hooi. Sketch-based anomaly detection in streaming graphs. arXiv preprint arXiv: Arxiv-2106.04486, 2021.
[9] Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast and accurate anomaly detection in dynamic graphs with a two-pronged approach. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.
[10] Prabin B. Lamichhane and William Eberle. Anomaly detection in edge streams using term frequency-inverse graph frequency (tf-igf) concept. 2021 IEEE International Conference on Big Data (Big Data), pages 661–667, 2021.
[11] Yisroel Mirsky, Tomer Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble of autoencoders for online network intrusion detection. Network And Distributed System Security Symposium, 2018.
[12] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in dynamic graph using attention-based temporal gcn. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 4419–4425. International Joint Conferences on Artificial Intelligence Organization, 7 2019.
[13] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed networks. In SDM, 2019.
[14] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li, and Haifeng Chen. Structural temporal graph neural networks for anomaly detection in dynamic graphs. International Conference On Information And Knowledge Management, 2020.
[15] Chenming Yang, Liang Zhou, Hui Wen, Zhiheng Zhou, and Yue Wu. H-vgrae: A hierarchical stochastic spatial-temporal embedding method for robust anomaly detection in dynamic networks. ArXiv, abs/2007.06903, 2020.
[16] Dali Zhu, Yuchen Ma, and Yinlong Liu. A flexible attentive temporal graph networks for anomaly detection in dynamic networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pages 870–875, 2020.
[17] Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen, and Vincent CS Lee. Anomaly detection in dynamic graphs via transformer. IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2021.
[18] Zitong Li, Xiang Cheng, Lixiao Sun, Ji Zhang, and Bing Chen. A hierarchical approach for advanced persistent threat detection with attention-based graph neural networks. Security and Communication Networks, 2021, 05 2021.
[19] Ramesh Paudel and H Huang. Pikachu: Temporal walk based dynamic graph embedding for network anomaly detection. 04 2022.
[20] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn: A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation systems, 21(9):3848–3858, 2019.
[21] Xizhou Zhu, Dazhi Cheng, Zheng Zhang, Stephen Lin, and Jifeng Dai. An empirical study of spatial attention mechanisms in deep networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
[22] Thomas Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. International Conference On Learning Representations, 2016.
[23] Xun Liu, Junling You, Yulei Wu, Tong Li, Liangxiong Li, Zheyuan Zhang, and Jingguo Ge. Attention-based bidirectional gru networks for efficient https traffic classification. Inf. Sci., 541:297–315, 2020.
[24] Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph representations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 7052–7076. PMLR, 17–23 Jul 2022.
[25] Jun Liu, Gang Wang, Ping Hu, Ling-Yu Duan, and Alex C. Kot. Global contextaware attention lstm networks for 3d action recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3671–3680, 2017.
[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
[27] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by translating on hyperplanes. Proceedings of the AAAI Conference on Artificial Intelligence, 28(1), Jun. 2014.
[28] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.
[29] Bryan Perozzi, Rami Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. Knowledge Discovery And Data Mining, 2014.
[30] Digg network dataset – KONECT, September 2016.
[31] Uc irvine messages network dataset – KONECT, October 2017.
[32] Digg.com, 2000.
[33] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.
[34] Tom Fawcett. Introduction to roc analysis. Pattern Recognition Letters, 27:861–874, 06 2006.
[35] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, page 233–240, New York, NY, USA, 2006. Association for Computing Machinery.
[36] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
指導教授 孫敏德 審核日期 2023-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明