參考文獻 |
[1] Nakamura, Y., Pashkin, Y. and Tsai, J. Coherent control of macroscopic quantum states
in a single-Cooper-pair box. Nature 398, 786–788 (1999).
[2] A. Blais, R.-S. Huang, A. Wallraff , S. M. Girvin, and R. J. Schoelkopf, Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum com-
putation Phys. Rev. A 69, 062320 (2004).
[3] A. Wallraff , D. I. Schuster, A. Blais, L. Frunzio, R.- S. Huang, J. Majer, S. Kumar, S. M.
Girvin and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit
using circuit quantum electrodynamics. Nature (London) 431, 162 (2004).
[4] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
[5] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, and F. Nori, Microwave photonics with
superconducting quantum circuits. Phys. Rep. 718-719, 1 (2017).
[6] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A
quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
[7] F. Arute et al., Quantum supremacy using a programmable superconducting processor.
Nature 574, 505 (2019).
[8] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced trans-
parency: Optics in coherent media. Reviews of Modern Physics 77, 633 (2005).
[9] S. E. Harris, J. E. Field, and A. Imamoglu, Nonlinear optical processes using electromag-
netically induced transparency. Physical Review Letters 64, 1107 (1990).
[10] K.-J. Boller, A. Imamoglu, and S. E. Harris Observation of electromagnetically induced
transparency, Phys. Rev. Lett. 66, 25931991.
[11] Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, Coherent
Optical Memory with High Storage Effi ciency and Large Fractional Delay. Phys. Rev. Lett.
110, 083601(2013).
[12] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in Electromagnetically Induced
Transparency Phys. Rev. Lett. 84, 5094 (2000).
73BIBLIOGRAPHY
[13] Liu, C., Dutton, Z., Behroozi, C. and Lene Vestergaard Hau, Observation of coherent
optical information storage in an atomic medium using halted light pulses. Nature 409,
490–493 (2001)
[14] L. Slodicka, G. Hetet, S. Gerber, M. Hennrich, and R. Blatt, Electromagnetically Induced
Transparency from a Single Atom in Free Space. Physical Review Letters 105, 153604
(2010)
[15] A. A. Abdumalikov, Jr., O. Astafi ev, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and
J. S. Tsai, Electromagnetically Induced Transparency on a Single Artifi cial Atom. Phys.
Rev. Lett. 104, 193601 (2010).
[16] P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively Discerning Autler-Townes
Splitting from Electromagnetically Induced Transparency. Phys. Rev. Lett. 107, 163604
(2011).
[17] T. Y. Abi-Salloum, Electromagnetically induced transparency and Autler-Townes splitting:
Two similar but distinct phenomena in two categories of three-level atomic systems. Phys.
Rev. A 81, 053836 (2010).
[18] H.-C. Sun, Y.-X. Liu, H. Ian, J. Q. You, E. Il’ichev, and F. Nori, Electromagnetically in-
duced transparency and Autler-Townes splitting in superconducting fl ux quantum circuits.
Phys. Rev. A 89, 063822 (2014).
[19] S. Novikov, T. Sweeney, J. E. Robinson, S. P. Premaratne, B. Suri, F. C. Wellstood, and
B. S. Palmer, Raman coherence in a circuit quantum electrodynamics lambda system. Nat.
Phys. 12, 75 (2016).
[20] X. Gu, S.-N. Huai, F. Nori, and Y.-X. Liu, Polariton states in circuit QED for electromag-
netically induced transparency. Phys. Rev. A 93, 063827 (2016).
[21] Q.-C. Liu, T.-F. Li, X.-Q. Luo, H. Zhao, W. Xiong, Y.-S. Zhang, Z. Chen, J. S. Liu,
W. Chen, F. Nori, J. S. Tsai, and J. Q. You, Method for identifying electromagnetically
induced transparency in a tunable circuit quantum electrodynamics system. Phys. Rev. A
93, 053838 (2016).
[22] J. Long, H. S. Ku, X. Wu, X. Gu, R. E. Lake, M. Bal, Y.-X. Liu, and D. P. Pappas, Elec-
tromagnetically Induced Transparency in Circuit Quantum Electrodynamics with Nested
Polariton States. Phys. Rev. Lett. 120, 083602 (2018).
[23] A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. Sandbo Chang, A. F.
Kockum, and C. M. Wilson Engineering the level structure of a giant artifi cial atom in
waveguide quantum electrodynamics Phys. Rev. A 103, 023710 (2021).
[24] G. Andersson, M. K. Ekström, and P. Delsing, Electromagnetically Induced Acoustic Trans-
parency with a Superconducting Circuit. Phys. Rev. Lett. 124, 240402 (2020).
74[25] I-C. Hoi, C M Wilson, G. Johansson, J. Lindkvist, B. Peropadre, T. Palomaki and Per
Delsing Microwave quantum optics with an artifi cial atom in one-dimensional open space
New J. Phys. 15 025011 (2013).
[26] I-C. Hoi. (2013) Quantum Optics with Propagating Microwaves in Superconducting Cir-
cuits. [Doctoral dissertation], Chalmers University of Technology.
[27] O. Astafi ev, A. M. Zagoskin, A. A. Abdumalikov Jr., Yu. A. Pashkin, T. Yamamoto, K.
Inomata, Y. Nakamura, J. S. Tsai, Resonance Fluorescence of a Single Artifi cial Atom.
Science 327, 840–843 (2010).
[28] Hoi, IC., Kockum, A., Tornberg, L. et al. Probing the quantum vacuum with an artifi cial
atom in front of a mirror. Nature Phys 11, 1045–1049 (2015).
[29] P. Y. Wen, A. F. Kockum, H. Ian, J. C. Chen, F. Nori, and I.-C. Hoi, Refl ective Amplifi ca-
tion without Population Inversion from a Strongly Driven Superconducting Qubit. Phys.
Rev. Lett. 120, 063603 (2018).
[30] P. Y. Wen, K.-T. Lin, A. F. Kockum, B. Suri, H. Ian, J. C. Chen, S. Y. Mao, C. C. Chiu,
P. Delsing, F. Nori, G.-D. Lin, and I.-C. Hoi. Large Collective Lamb Shift of Two Distant
Superconducting Artifi cial Atoms Phys. Rev. Lett. 123, 233602 (2019).
[31] W.-J. Lin, Y. Lu, P. Y. Wen, Y.-T. Cheng, C.-P. Lee, K. T. Lin, K.-H. Chiang, M. C.
Hsieh, C.-Y. Chen, C.-H. Chien, J. J. Lin, J.-C. Chen, Y. H. Lin, C.-S. Chuu, F. Nori, A.
F. Kockum, G. D. Lin, P. Delsing, and I.-C. Hoi, Deterministic Loading of Microwaves onto
an Artifi cial Atom Using a Time-Reversed Waveform. Nano Lett. 2022, 22, 20, 8137–8142
[32] K. Lalumiére, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff and A. Blais, Input-
output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev.
A 88, 043806 (2013).
[33] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung, L. Ocola, D. A. Czaplewski,
B. Baker, J. Lawrence, J. Koch, and D. I. Schuster, Realization of a Λ System with
Metastable States of a Capacitively Shunted Fluxonium. Phys. Rev. Lett. 120, 150504
(2018).
[34] W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas,
Direct Observation of Coherent Population Trapping in a Superconducting Artifi cial Atom.
Phys. Rev. Lett. 104, 163601 (2010).
[35] W. Feng, D.-W. Wang, H. Cai, S.-Y. Zhu, and M. O. Scully, Electromagnetically induced
transparency with superradiant and subradiant states. Phys. Rev. A 95, 033845 (2017).
[36] K.-H. Chiang and Y.-F. Chen, Tunable Λ-type system made of a superconducting qubit
pair. Phys. Rev. A 106, 023707 (2022).
[37] J. M. Gambetta, A. A. Houck, and A. Blais, Superconducting Qubit with Purcell Protection
and Tunable Coupling. Phys. Rev. Lett. 106, 030502 (2011).
75BIBLIOGRAPHY
[38] S. J. Srinivasan, A. J. Hoff man, J. M. Gambetta, and A. A. Houck, Phys. Tunable Coupling
in Circuit Quantum Electrodynamics Using a Superconducting Charge Qubit with a V -
Shaped Energy Level Diagram Phys. Rev. Lett. 106, 083601 (2011).
[39] G. Zhang, Y. Liu, J. J. Raftery, and A. A. Houck, Suppression of photon shot noise dephas-
ing in a tunable coupling superconducting qubit. Npj Quantum Information 3, 1 (2017).
[40] R. H. Dicke, Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954).
[41] Z. Ficek and R. Tanaś, Entangled states and collective nonclassical eff ects in two-atom
systems. Phys. Rep. 372, 5 (2002).
[42] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio,
D. I. Schuster, A. A. Houck, A. Wallraff , A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007).
[43] A. F. van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais, and A. Photon-Mediated
Interactions Between Distant Artifi cial Atoms Wallraff , , Science 342, 1494 (2013).
[44] J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff , Observation of Dicke super-
radiance for two artifi cial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186
(2014).
[45] S. N. Shevchenko, S. Ashhab and Franco Nori, Landau–Zener–Stückelberg interferometry
Phys. Rep. 492, 1, (2010)
[46] J. Li, M. P. Silveri, K. S. Kumar, J.-M. Pirkkalainen, A. Vepsäläinen, W. C. Chien, J.
Tuorila, M. A. Sillanpää, P. J. Hakonen, E. V. Thuneberg, and G. S. Paraoanu, Motional
averaging in a superconducting qubit. Nat. Commun. 4, 1420 (2013).
[47] M. Silveri, K. Kumar, J. Tuorila, J. Li, A. Vepsalainen, E. Thuneberg, and G. Paraoanu,
Stückelberg interference in a superconducting qubit under periodic latching modulation.
New J. Phys. 17 (2015) 043058 (2015)
[48] P. Y. Wen, O. V. Ivakhnenko, M. A. Nakonechnyi, B. Suri, J.-J. Lin, W.-J. Lin, J. C.
Chen, S. N. Shevchenko, Franco Nori, and I.-C. Hoi, Landau-Zener-Stückelberg-Majorana
interferometry of a superconducting qubit in front of a mirror. Phys. Rev. B 102, 075448
(2020).
[49] S. Rebić, J. Twamley, and G. J. Milburn, Giant Kerr Nonlinearities in Circuit Quantum
Electrodynamics. Phys. Rev. Lett. 103, 150503 (2009).
[50] H. Okamoto, A. Gourgout, C.Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang and H.
Yamaguchi, Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys.
9, 480 (2013).
[51] A. Opremcak, D. Sank, B. Chiaro, B. Foxen, M. McEwen, R. McDermott, J. M Martinis.
Driving not so forbidden state transitions in a frequency-tunable transmon. A26.00012,
APS March Meeting March 4, 2019, Boston, Massachusetts.
76[52] M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, M. Brink, J. M. Chow,
and B. L. T. Plourde, Tunable Superconducting Qubits with Flux-Independent Coherence.
Phys. Rev. Applied 8, 044003 (2017).
[53] M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, G. S. Paraoanu,
and P. J. Hakonen, Autler-Townes Eff ect in a Superconducting Three-Level System. Phys.
Rev. Lett. 103, 193601 (2009).
[54] J. Li, G. S. Paraoanu, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, M. A. Sillanpää,
and P. J. Hakonen, Decoherence, Autler-Townes eff ect, and dark states in two-tone driving
of a three-level superconducting system. Phys. Rev. B 84, 104527 (2011).
[55] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura, Implementation of an
Impedance-Matched Λ-System by Dressed-State Engineering. Phys. Rev. Lett. 111, 153601
(2013).
[56] K. Inomata, K. Koshino, Z. R. Lin, W. D. Oliver, J. S. Tsai, Y. Nakamura, and T. Ya-
mamoto, Microwave Down-Conversion with an Impedance-Matched Λ System in Driven
Circuit QED. Phys. Rev. Lett. 113, 063604 (2014).
[57] P. Kumar, S. Sendelbach, M. A. Beck, J. W. Freeland, Z. Wang, H. Wang, C. C. Yu, R. Q.
Wu, D. P. Pappas, and R. McDermott, Origin and Reduction of 1/f Magnetic Flux Noise
in Superconducting Devices. Phys. Rev. Appl. 6, 041001(R) (2016).
[58] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen,
D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman,
and W. D. Oliver, The fl ux qubit revisited to enhance coherence and reproducibility. Nat.
Commun. 7, 12964 (2016).
[59] Y. Zhong, H. Chang, A. Bienfait, É. Dumur, M.-H. Chou, C.R. Conner, J.Grebel, R. G.
Povey, H. Yan , D. I. Schuster, A. N. Cleland, Deterministic multi-qubit entanglement in a
quantum network. Nature 590, 571 (2021).
[60] N. Didier, E. A. Sete, M. P. da Silva, and C. Rigetti, Analytical modeling of parametrically
modulated transmon qubits. Phys. Rev. A 97, 022330 (2018)
[61] S. A. Caldwel et al., Parametrically Activated Entangling Gates Using Transmon Qubits.
Phys. Rev. Applied 10, 034050 (2018).
[62] M. Reagor et al., Demonstration of universal parametric entangling gates on a multi-qubit
lattice. Sci Adv 4, eaao3603 (2018).
[63] N. Didier, E. A. Sete, J. Combes, and M. P. da Silva, ac Flux Sweet Spots in Parametrically
Modulated Superconducting Qubits. Phys. Rev. Appl. 12, 054015 (2019).
[64] P. Forn-Díaz, C. W. Warren, C. W. S. Chang, A. M. Vadiraj, and C. M. Wilson, On-Demand
Microwave Generator of Shaped Single Photons. Phys. Rev. Applied 8, 054015 (2017)
[65] A. Megrant et al., Planar superconducting resonators with internal quality factors above
one million. Appl. Phys. Lett. 100, 113510 (2012).
77BIBLIOGRAPHY
[66] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E. Lucero, M. Neeley, A. D.
O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and
J. M. Martinis Fast Tunable Coupler for Superconducting Qubits. Phys. Rev. Lett. 106,
060501 (2011).
[67] A. Ripin, E. Connors, and J. Nichol, urpec (2019). https://github.com/nicholgroup/
urpec
[68] D. Droui, et al., CASINO (2016). https://www.gegi.usherbrooke.ca/casino/
[69] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adia-
batic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).
[70] B. T. Torosov and N. V. Vitanov, Composite stimulated Raman adiabatic passage. Phys.
Rev. A 87, 043418 (2013).
[71] K. Bergmann et al., Roadmap on STIRAP applications. J. Phys. B At. Mol. Opt. Phys.
52, 202001 (2019).
[72] K. S. Kumar, A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Stimulated Raman adiabatic
passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016).
[73] S. P. Premaratne, F. C. Wellstood, and B. S. Palmer, Microwave photon Fock state gener-
ation by stimulated Raman adiabatic passage. Nat. Commun. 8, 14148 (2017).
[74] A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a
three-level superconducting circuit. Sci Adv 5, eaau5999 (2019).
[75] L. P. Yatsenko, V. I. Romanenko, B. W. Shore, and K. Bergmann, Stimulated Raman
adiabatic passage with partially coherent laser fields. Phys. Rev.A 65, 043409 (2002).
[76] L. P. Yatsenko, B. W. Shore, and K. Bergmann, Detrimental consequences of small rapid
laser fluctuations on stimulated Raman adiabatic passage. Phys. Rev.A 89, 013831 (2014).
[77] TW_Thesis_Template, sppmg, https://github.com/sppmg/TW_Thesis_Template, Embedded bibliography demo. |