摘要(英) |
The observation of Gravitational Waves(GW) is one of the most exciting dis- coveries of this century. Since 1974, Hulse and Taylor discovered the binary star system emits energies, people realized the prediction of GW from general rela- tivity is possible. In 2015, an advanced Laser Interferometer Gravitational wave Observatory called aLIGO succeed in directly detecting the GW signals from a binary black hole merger. During this decade, with advanced Virgo and KA- GRA’s joining, the sensitivity dramatically increases, and the events discovered increased from that binary black hole system to 90 events in the latest catalog. The observation of GW is detecting the displacement of test masses in the km- scale observatory, with the most frontier technologies applied, the requirements of detecting the GW strain is can be satisfied. As the GW becomes one of the important cosmological resources, the accuracy of the sources is required to reach with other astronomy research. This is why the calibration of the response of the interferometer is crucial, the error estimation of calibration is a crucial part of the parameter estimation of the GW source.
KAGRA, the third km-scale GW observatory located in Japan, Gifu, joined the observation network in April 2020 and features two unique technologies - underground and cryogenic. KAGRA is the first observatory built on the under- ground site, in order to reduce the seismic noise, and the cryogenic system is to reduce the thermal noise.
In this thesis, we discuss the error estimation analysis based on the simu- lated frequency domain calibration data of KAGRA during the period O3GK in April 2020. We develop a calibration pipeline based on the maximum likelihood method to crosscheck with the previous pipeline based on the Bayesian method. The maximum likelihood method provides a faster pipeline for crosscheck in the ratio around. By crosscheck between these two method, and the results proves that these two are consistence, so that we can improve the accuracy of GW observation with more reliable parameters and faster pipeline. |
參考文獻 |
[1] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Physical Review Letters 116.6 (2016). DOI: 10 . 1103/physrevlett.116.061102. URL: https://doi.org/10. 1103%2Fphysrevlett.116.061102.
[2] R. A. Hulse and J. H. Taylor. “Discovery of a pulsar in a binary system.” In: 195 (Jan. 1975), pp. L51–L53. DOI: 10.1086/181708.
[3] The LIGO Scientific Collaboration et al. GWTC-3: Compact Binary Coales- cences Observed by LIGO and Virgo During the Second Part of the Third Ob- serving Run. 2021. DOI: 10.48550/ARXIV.2111.03606. URL: https: //arxiv.org/abs/2111.03606.
[4] Bernard Schutz. A First Course in General Relativity. 2nd ed. Cambridge University Press, 2009. DOI: 10.1017/CBO9780511984181.
[5] Yizen Chu. Physics in Curved Spacetimes. URL: http : / / www . stargazing.net/yizen/PhysicsInCurvedSpacetimes.html.
[6] Alexandre Le Tiec and Jérôme Novak. “Theory of Gravitational Waves”. In: An Overview of Gravitational Waves. WORLD SCIENTIFIC, 2017, pp. 1– 41. DOI: 10.1142/9789813141766_0001. URL: https://doi.org/ 10.1142%2F9789813141766_0001.
[7] LIGO. URL: https://www.ligo.caltech.edu/.
[8] Peter R Saulson. Fundamentals of Interferometric Gravitational Wave Detec- tors. 2nd. WORLD SCIENTIFIC, 1994. DOI: 10 . 1142 / 2410. eprint: https://www.worldscientific.com/doi/pdf/10.1142/2410. URL: https://www.worldscientific.com/doi/abs/10.1142/ 2410.
[9] SOUNDS OF SPACETIME. URL: https://www.soundsofspacetime. org/the-basics-of-binary-coalescence.html.
[10] B. P. Abbott et al. “The basic physics of the binary black hole merger GW150914”. In: Annalen der Physik 529.1-2 (2016), p. 1600209. DOI: 10. 1002/andp.201600209. URL: https://doi.org/10.1002% 2Fandp.201600209.
131
[11] Eric Chassande-Mottin et al. “Multimessenger astronomy with the Ein- stein Telescope”. In: General Relativity and Gravitation 43.2 (2010), pp. 437– 464. DOI: 10.1007/s10714-010-1019-z. URL: https://doi.org/ 10.1007%2Fs10714-010-1019-z.
[12] Patrick J. Sutton. A Rule of Thumb for the Detectability of Gravitational-Wave Bursts. 2013. DOI: 10.48550/ARXIV.1304.0210. URL: https:// arxiv.org/abs/1304.0210.
[13] The Event Horizon Telescope Collaboration et al. “First M87 Event Hori- zon Telescope Results. I. The Shadow of the Supermassive Black Hole”. In: The Astrophysical Journal Letters 875.1 (2019), p. L1. DOI: 10.3847/2041- 8213/ab0ec7. URL: https://dx.doi.org/10.3847/2041-8213/ ab0ec7.
[14] R. Abbott et al. “GW190521: A Binary Black Hole Merger with a To- tal Mass of”. In: Physical Review Letters 125.10 (2020). DOI: 10.1103/ physrevlett.125.101102. URL: https://doi.org/10.1103% 2Fphysrevlett.125.101102.
[15] Shichao Wu, Zhoujian Cao, and Zong-Hong Zhu. “Measuring the eccen- tricity of binary black holes in GWTC-1 by using the inspiral-only wave- form”. In: Monthly Notices of the Royal Astronomical Society 495 (Feb. 2020). DOI: 10.1093/mnras/staa1176.
[16] Richard C. Tolman. “Static Solutions of Einstein’s Field Equations for Spheres of Fluid”. In: Phys. Rev. 55 (4 1939), pp. 364–373. DOI: 10.1103/ PhysRev.55.364. URL: https://link.aps.org/doi/10.1103/ PhysRev.55.364.
[17] J. R. Oppenheimer and G. M. Volkoff. “On Massive Neutron Cores”. In: Phys. Rev. 55 (4 1939), pp. 374–381. DOI: 10.1103/PhysRev.55.374. URL: https://link.aps.org/doi/10.1103/PhysRev.55.374.
[18] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119 (16 2017), p. 161101. DOI: 10.1103/PhysRevLett.119.161101. URL: https://link. aps.org/doi/10.1103/PhysRevLett.119.161101.
[19] R. Abbott et al. “Gravitational-wave Constraints on the Equatorial Elliptic- ity of Millisecond Pulsars”. In: The Astrophysical Journal Letters 902.1 (2020), p. L21. DOI: 10.3847/2041-8213/abb655. URL: https://doi.org/ 10.3847%2F2041-8213%2Fabb655.
132
[20] J. Aasi et al. “SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS”. In: The As- trophysical Journal 813.1 (2015), p. 39. DOI: 10.1088/0004-637x/813/ 1/39. URL: https://doi.org/10.1088%2F0004-637x%2F813% 2F1%2F39.
[21] LIGO. Example of continuous gravitational wave. URL: https : / / www . ligo.org/science/GW-Continuous.php.
[22] R. Abbott et al. “All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary sys- tems”. In: Physical Review D 103.6 (2021). DOI: 10.1103/physrevd. 103.064017. URL: https://doi.org/10.1103%2Fphysrevd.103. 064017.
[23] Ernazar Abdikamalov, Giulia Pagliaroli, and David Radice. “Gravitational Waves from Core-Collapse Supernovae”. In: Handbook of Gravitational Wave Astronomy. Springer Singapore, 2021, pp. 1–37. DOI: 10.1007/978- 981-15-4702-7_21-1. URL: https://doi.org/10.1007%2F978- 981-15-4702-7_21-1.
[24] Nelson Christensen. “Stochastic gravitational wave backgrounds”. In: Re- ports on Progress in Physics 82.1 (2018), p. 016903. DOI: 10.1088/1361- 6633/aae6b5. URL: https://doi.org/10.1088%2F1361-6633% 2Faae6b5.
[25] LIGO. Burst of gamma ray. URL: https://www.ligo.org/science/ GW-Burst.php.
[26] Sylvia Biscoveanu et al. “Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds”. In: Physi- cal Review Letters 125.24 (2020). DOI: 10.1103/physrevlett.125. 241101. URL: https://doi.org/10.1103%2Fphysrevlett.125. 241101.
[27] Nelson Christensen. “Stochastic gravitational wave backgrounds”. In: Re- ports on Progress in Physics 82.1 (2018), p. 016903. DOI: 10.1088/1361- 6633/aae6b5. URL: https://doi.org/10.1088%2F1361-6633% 2Faae6b5.
[28] Federico De Lillo, Jishnu Suresh, and Andrew L Miller. “Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity”. In: Monthly Notices of the Royal Astronomical Society 513.1 (2022), pp. 1105–1114. DOI: 10.1093/mnras/stac984. URL: https://doi. org/10.1093%2Fmnras%2Fstac984.
[29] ESA NASA. URL: https://www.centauri-dreams.org/2010/11/ 24/a-cosmic-gravitational-wave-background/.
133
[30] Shinji Miyoki David Shoemaker Alessio Rocchi. URL: https : / / dcc . ligo.org/LIGO-G2002127/public.
[31] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs”. In: Phys. Rev. X 9 (3 2019), p. 031040. DOI: 10.1103/PhysRevX.9.031040. URL: https://link.aps.org/ doi/10.1103/PhysRevX.9.031040.
[32] R. Abbott et al. “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run”. In: Phys. Rev. X 11 (2 2021), p. 021053. DOI: 10 . 1103 / PhysRevX . 11 . 021053. URL: https://link.aps.org/doi/10.1103/PhysRevX. 11.021053.
[33] LIGO Scientific Collaboration. URL: https : / / www . ligo . caltech . edu/MIT/image/ligo20211107a.
[34] and H Abe et al. “Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK)”. In: Progress of Theoretical and Ex- perimental Physics (2022). DOI: 10.1093/ptep/ptac093. URL: https: //doi.org/10.1093%2Fptep%2Fptac093.
[35] T. Akutsu et al. Overview of KAGRA: Detector design and construction history. 2020. DOI: 10.48550/ARXIV.2005.05574. URL: https://arxiv. org/abs/2005.05574.
[36] Patrick Brady. LSC Update at Northwestern University. URL: https : / / dcc.ligo.org/LIGO-G2300640.
[37] and N. Aghanim et al. “iPlanck/i2018 results”. In: Astronomy & Astro- physics 641 (2020), A6. DOI: 10.1051/0004-6361/201833910. URL: https://doi.org/10.1051%2F0004-6361%2F201833910.
[38] Adam G. Riess et al. “Large Magellanic Cloud Cepheid Standards Pro- vide a 1Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond CDM”. In: The Astrophysical Journal 876.1 (2019), p. 85. DOI: 10.3847/1538-4357/ab1422. URL: https: //dx.doi.org/10.3847/1538-4357/ab1422.
[39] Bernard F. Schutz. “Determining the Hubble constant from gravitational wave observations”. In: Nature (1986). DOI: 10.1038/323310a0. URL: https://doi.org/10.1038/323310a0.
[40] and B. P. Abbott et al. “A gravitational-wave standard siren measure- ment of the Hubble constant”. In: Nature 551.7678 (2017), pp. 85–88. DOI: 10.1038/nature24471. URL: https://doi.org/10.1038% 2Fnature24471.
134
[41] Daniel J. Mortlock et al. “Unbiased Hubble constant estimation from bi- nary neutron star mergers”. In: Physical Review D 100.10 (2019). DOI: 10. 1103/physrevd.100.103523. URL: https://doi.org/10.1103% 2Fphysrevd.100.103523.
[42] J A Clark et al. “Observing gravitational waves from the post-merger phase of binary neutron star coalescence”. In: Classical and Quantum Grav- ity 33.8 (2016), p. 085003. DOI: 10.1088/0264-9381/33/8/085003. URL: https://doi.org/10.1088%2F0264-9381%2F33%2F8% 2F085003.
[43] KAGRA Collaboration et al. Overview of KAGRA : KAGRA science. 2020. arXiv: 2008.02921 [gr-qc].
[44] S Biscans et al. “Control strategy to limit duty cycle impact of earth- quakes on the LIGO gravitational-wave detectors”. In: Classical and Quan- tum Gravity 35.5 (2018), p. 055004. DOI: 10.1088/1361-6382/aaa4aa. URL: https://dx.doi.org/10.1088/1361-6382/aaa4aa.
[45] F Matichard et al. “Seismic isolation of Advanced LIGO: Review of strat- egy, instrumentation and performance”. In: Classical and Quantum Gravity 32.18 (2015), p. 185003. DOI: 10.1088/0264-9381/32/18/185003. URL: https://doi.org/10.1088%2F0264-9381%2F32%2F18% 2F185003.
[46] Krishna Venkateswara et al. “A high-precision mechanical absolute- rotation sensor”. In: Review of Scientific Instruments 85.1 (2014), p. 015005. DOI: 10.1063/1.4862816. eprint: https://doi.org/10.1063/1. 4862816. URL: https://doi.org/10.1063/1.4862816.
[47] T. Akutsu et al. Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer. 2020. DOI: 10.48550/ARXIV.2009.09305. URL: https://arxiv.org/abs/ 2009.09305.
[48] A. A. Michelson and E. W. Morley. “On the relative motion of the Earth and the luminiferous ether”. In: American Journal of Science s3-34.203 (1887), pp. 333–345. ISSN: 0002-9599. DOI: 10.2475/ajs.s3-34.203. 333. eprint: https://www.ajsonline.org/content/s3-34/203/ 333.full.pdf. URL: https://www.ajsonline.org/content/s3- 34/203/333.
[49] Donald R. Herriott and Harry J. Schulte. “Folded Optical Delay Lines”. In: Appl. Opt. 4.8 (1965), pp. 883–889. DOI: 10.1364/AO.4.000883. URL: https://opg.optica.org/ao/abstract.cfm?URI=ao-4-8-883.
[50] T. Sekiguchi. “Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors”. PhD thesis. Tokyo U., 2016.
135
[51] LIGO. URL: https://www.ligo.caltech.edu/page/about- aligo.
[52] KAGRA. History of KAGRA. URL: https : / / gwcenter . icrr . u - tokyo.ac.jp/en/plan.
[53] B. P. Abbott et al. “GW170814: A Three-Detector Observation of Gravita- tional Waves from a Binary Black Hole Coalescence”. In: Physical Review Letters 119.14 (2017). DOI: 10.1103/physrevlett.119.141101. URL: https://doi.org/10.1103%2Fphysrevlett.119.141101.
[54] Virgo’s history. URL: https://www.virgo-gw.eu/about/virgo- history/.
[55] R Kumar et al. “Status of the cryogenic payload system for the KAGRA detector”. In: Journal of Physics: Conference Series 716.1 (2016), p. 012017. DOI: 10.1088/1742-6596/716/1/012017. URL: https://dx.doi. org/10.1088/1742-6596/716/1/012017.
[56] KAGRA. bKAGRA Sensitivity Curve. URL: https://gwcenter.icrr. u-tokyo.ac.jp/en/researcher/parameter.
[57] Craig Cahillane et al. “Calibration uncertainty for Advanced LIGO’s first and second observing runs”. In: Phys. Rev. D 96 (10 2017), p. 102001. DOI: 10.1103/PhysRevD.96.102001. URL: https://link.aps.org/ doi/10.1103/PhysRevD.96.102001.
[58] D Tuyenbayev et al. “Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations”. In: Classical and Quan- tum Gravity 34.1 (2016), p. 015002. DOI: 10.1088/0264-9381/34/1/ 015002. URL: https://dx.doi.org/10.1088/0264-9381/34/1/ 015002.
[59] T Akutsu et al. “Overview of KAGRA: Calibration, detector characteri- zation, physical environmental monitors, and the geophysics interferom- eter”. In: Progress of Theoretical and Experimental Physics 2021 (Feb. 2021). DOI: 10.1093/ptep/ptab018.
[60] S. Karki et al. “The Advanced LIGO photon calibrators”. In: Review of Sci- entific Instruments 87.11 (2016), p. 114503. DOI: 10.1063/1.4967303. eprint: https://doi.org/10.1063/1.4967303. URL: https: //doi.org/10.1063/1.4967303.
[61] D Estevez et al. “The Advanced Virgo photon calibrators”. In: Classi- cal and Quantum Gravity 38.7 (2021), p. 075007. DOI: 10.1088/1361- 6382/abe2db. URL: https://doi.org/10.1088%2F1361-6382% 2Fabe2db.
136
[62] Yuki Inoue et al. “Improving the absolute accuracy of the gravitational wave detectors by combining the photon pressure and gravity field cal- ibrators”. In: Physical Review D 98.2 (2018). DOI: 10.1103/physrevd. 98.022005. URL: https://doi.org/10.1103%2Fphysrevd.98. 022005.
[63] Inoue Yuki. KAGRA subway map. URL: https : / / gwdoc . icrr . u - tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid= 9550.
[64] “Preface”. In: Signals and Systems using MATLAB. Ed. by Luis F. Chaparro. Boston: Academic Press, 2011. ISBN: 978-0-12-374716-7. DOI: https:// doi.org/10.1016/B978-0-12-374716-7.00023-5. URL: https : / / www . sciencedirect . com / science / article / pii / B9780123747167000235.
[65] Masahiro Kamiizumi. High Power Coil Driver Board. URL: https : / / gwdoc . icrr . u - tokyo . ac . jp / cgi - bin / private / DocDB / ShowDocument?docid=3503.
[66] Allan G. Piersol Julius S. Bendat. “Random Data: Analysis and Mea- surement Procedures, Fourth Edition”. In: (2010). DOI: 10 . 1002 / 9781118032428. URL: https://onlinelibrary.wiley.com/doi/ book/10.1002/9781118032428.
[67] Gregorio Landi and Giovanni E. Landi. “The Cramer—Rao Inequality to Improve the Resolution of the Least-Squares Method in Track Fitting”. In: Instruments 4.1 (2020), p. 2. DOI: 10.3390/instruments4010002. URL: https://doi.org/10.3390%2Finstruments4010002.
[68] T. Editors of Encyclopaedia Britannica. “Student’s t-test”. In: Encyclopedia Britannica (2022). URL: https://www.britannica.com/science/ Students-t-test.
[69] S. Karki et al. “The Advanced LIGO photon calibrators”. In: Review of Sci- entific Instruments 87.11 (2016), p. 114503. DOI: 10.1063/1.4967303. URL: https://doi.org/10.1063%2F1.4967303.
[70] Twin tee filter complex transfer function. URL: https : / / www . millersville.edu/physics/experiments/111/. |