以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:112 、訪客IP:3.133.149.208
姓名 張紘翔(Hong-Xiang Zhang) 查詢紙本館藏 畢業系所 物理學系 論文名稱
(The substrate effect for CVD growth WS2)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 目前利用化學氣象成績(CVD)進行大面積生長的二硫化鎢(WS_2)多為多晶,因此形成較多的晶界,而阻礙電子傳輸。在CVD中成核晶像主要是由生長基板這個參數決定,因此了解利用CVD生長WS_2時,基板對成核過程的影響是重要的,將有助於優化製程。在我們的研究當中,利用SEM量測WS_2在高定像熱解石磨(HOPG)、剝離的六方氮化硼(exfoliated h-BN)上生長的情形。發現具有兩種不同的成核趨勢: 模式1.因基板表面缺陷處降低了成核所需形成能而在缺陷處進行成核。模式2.利用表面形貌造成前軀體在表面具有濃度分布,而在皺褶(wrinkle)、摺疊(folding)等高度變化處進行成核。接著發現在使用CVD-石墨烯(Gr)當作生長基板時,利用氯化鈉(NaCl)是否參與生長WS_2時,將會影響CVD-Gr的表面缺陷狀況,而導致在有NaCl參與反應時是以模式1成核,反之則是模式2。接著在SEM以及TEM的量測分析中,確定WS_2在以模式1進行成核時並不會與CVD-Gr以固定晶像進行成核生長,但是在以模式2時,則會以固定晶像進行成長並且會依表面形貌決定主導成核的前驅體大小,使的在表面形貌為較平緩起伏時夾角為0°,也就是在單層石墨烯波紋(ripple)處,而在劇烈起伏處也就雙層石墨烯wrinkle或bubble處,夾角則為19°。 摘要(英) Recently, the large area WS_2 is prepared by utilizing CVD growth. However, the growth result is mostly polycrystalline, which leads to the formation of grain boundary, and the grain boundaries block electronic transmission. In CVD, the growth substrate is usually the primary parameter that affects the grain orientation, so it is important to understand the role of the substrate in CVD in order to achieve optimizing the fabrication. Thus, we utilized SEM to analyze the growth result for CVD growth WS_2 under different growth substrate. Then, we found that the nucleation mechanism of WS_2 on HOPG and exfoliated-h-BN can be divided into 1. Nucleation in the defect region due to the surface defected state reduces the formation energy. 2. Nucleation in the wrinkle or bubble region because the surface morphology leads to a higher local precursor concentration and accumulates into a larger cluster of precursor. In addition, we used NaCl to participate in the CVD growth of WS_2, and succeeded in switching the nucleation mechanism of WS_2 between above two modes when CVD growth graphene was used as the substrate, and as observed in the subsequent TEM measurements that WS_2 nucleated at the wrinkle and bubble had a tendency to grow in the same crystal orientation as the growth substrate. Furthermore, the degree of surface undulation determines the size of the precursor cluster that dominates the nucleation, making the angle between WS_2 and graphene are 0° or 19°. 關鍵字(中) ★ 二硫化鎢
★ 化學氣象沉積
★ 基板效應
★ SEM
★ TEM關鍵字(英) ★ WS2
★ CVD
★ substrate effect
★ SEM
★ TEM論文目次 摘要 I
Abstract II
Content III
List of Figures VI
Chapter 1 Introduction 1
Chapter2 Background 2
2-1 WS2: 2
2-2 Chemical vapor deposition growth (CVD) WS2 7
2-2-1 Chemical vapor deposition 7
2-2-2 Salt assisted-atmospheric pressure-CVD growth WS2 8
2-2-3 The role of W/S ratio 11
2-2-4 The role of substrate 16
2-3 Scanning electron microscope (SEM) 20
2-4 TEM 22
2-5 Micro-Raman 25
2-5-1 The principle of Raman scattering 25
2-5-2 Application of Raman spectra for WS2: 28
2-6 Photoluminescence (PL) 35
2-6-1 The principle of PL 35
2-6-2 Application of PL spectra of WS2 39
Chapter3 Experiment Method 42
3-1 CVD growth WS2: 42
3-1-1 Experiment set-up 42
3-1-2 source preparation 43
3-1-3 CVD annealing process 43
3-2 CVD growth graphene 45
3-2-1 copper foil pretreatment: Electro-polishing 45
3-2-2 CVD growth process 46
3-3 HOPG, exfoliated-hBN 47
3-4 Growth substrate preparation 48
3-4-1 Substrate clean 48
3-4-2Growth substrate 49
3-5 Transfer technique 51
3-5-1 Wet transfer process 51
3-5-2 Dry transfer process 53
3-6 Preparation of TEM sample 56
3-7 Characterize 57
3-7-1 optical property through OM 57
3-7-2 Morphology analysis through SEM 57
3-7-3 Lattice orientation analysis through TEM 57
3-7-4 Lattice structure analysis through Raman 58
3-7-5 Band structure analysis through PL 59
Chapter4 Result and discussion 60
4-1 Nucleation: 60
4-1-1 Growth situation under different substrate 60
4-1-2 Assumption of Growth model 63
4-2 Tunable growth mode: 65
4-2-1 Adjust the surface state of graphene: 65
4-2-2 Crystal orientation: 67
4-2-3 Discussion: why twisted angle 72
4-3 The quality of WS2 74
4-3-1 CVD Growth WS2 74
4-3-2 Growth vs transfer 77
Chapter5 Conclusion 80
Reference 82參考文獻 [1] SCIENCE 22 Oct 2004 Vol 306,Issue 5696 pp.666-669
[2] npj 2D Mater Appl 4, 29 (2020)
[3] Nano Research 2014, 7(12): 1731–1737
[4] Mater. Horiz., 2022,9, 2416-2424
[5] https://www.ossila.com/products/tungsten-disulfide
[6] Chem. Soc. Rev., 2021, 50, 10087–10115
[7] J. Mater. Chem. C, 2018,6, 11407-11415
[8] ACS Appl. Nano Mater. 2020, 3, 4, 3750–3759
[9] Phys. Rev. B 83, 245213
[10] Nanoscale. 2015 Apr 28;7(16):7402-8
[11] ACS Omega 2020, 5, 15169−15176
[12] Adv. Funct. Mater., 23: 5511-5517
[13] Nanoscale, 2019,11, 8372-8379
[14] Nat Rev Methods Primers 1, 5 (2021)
[15] Phys. Rev. Materials 4, 124004
[16] Weil, M., & Schubert, W. (2013). The Beautiful Colours of Tungsten Oxides.
[17] Cryst. Growth Des. 2022, 22, 5, 3206–3217
[18] Sci Rep 11, 22285 (2021)
[19] Cryst. Growth Des. 2022, 22, 5, 3206–3217
[20] Applied Surface Science, Volume 533, 2020, 147479
[21] Adv.Sci.2015, 2, 1500085
[22] Materials Today Advances 8 (2020) 100079
[23] Chem. Mater. 2014, 26, 22, 6371–6379
[24] Adv. Mater. 2019, 31, 1901351
[25] Adv. Mater. 2019, 31, 1901351
[26] Nanoscale, 2019, 11, 8706
[27] https://zeiss-campus.magnet.fsu.edu/articles/basics/resolution.html
[28] https://www.sciencedirect.com/topics/neuroscience/numerical-aperture
[29] https://en.wikipedia.org/wiki/Electron_microscope
[31]https://www.google.co.in/books/edition/A_Beginners_Guide_to_Scanning_Electron_M/Wyt1DwAAQBAJ?hl=en&gbpv=0
[32] https://www.thermofisher.com/tw/zt/home/materials-science/learning-center/applications/scanning-electron-microscope-sem-electron-column.html
[33] https://www.kctech.com.tw/sem-signal-types-electrons-and-the-information-they-provide/
[34] Small 2020, 16, 1906198
[35] http://nanofase.eu/show/tem---transmission-electron-microscopy_1454/
[36] Oshima, C., Aizawa, T., Souda, R., Ishizawa, Y., and Sumiyoshi, Y. (1988) Solid State Commun., 65, 1601
[37] Nanoscale Res Lett 10, 45 (2015)
[38] Nanoscale Res Lett 10, 45 (2015)
[39] Adv. Opt. Photon. 9, 315-428 (2017)
[40] Fang Liang et al 2018 Chinese Phys. B 27 037802
[41] Phys. Rev. B 84, 155413
[42] Phys. Rev. B 84, 155413
[43] Micromachines 2021, 12, 137.
[44] Sci Rep 7, 43037 (2017)
[45] 2017 2D Mater. 4 025030
[46] 2017 2D Mater. 4 015007
[47] ACS Nano 2014, 8, 11, 11320–11329
[48] ACS Nano 2014, 8, 11, 11320–11329
[49] Microelectronic Engineering, Volume 219, 2020, 111152, ISSN 0167-9317
[50] https://ned.ipac.caltech.edu/level5/Sept03/Li/Li4.html
[51] npj 2D Mater Appl 1, 15 (2017)
[52] Nat Commun 9, 3718 (2018)
[53] ACS Nano 2015, 9, 2, 1520–1527
[54] ACS Nano 2015, 9, 2, 1520–1527
[55] ACS Nano 2015, 9, 1, 647–655
[56] Sci Rep 3, 1608 (2013)
[57] Sci Rep 4, 7263 (2014)
[58] ACS Nano 2018, 12, 12, 12080–12088
[59] ACS Nano 2018, 12, 10032−10044
[60] Chem. Mater. 2020, 32, 7484−7491
[61] ACS Nano 2021, 15, 5944−5958
[62] ACS Omega 2020, 5, 31692−31699
[63] J Mater Sci 55, 990–996 (2020)
[64] ACS Nano 2019, 13, 3341−3352
[65] Sci Rep 9, 12958 (2019)
[66] Nat. Nanotechnol. 17, 33–38 (2022)
[67] Applied Surface Science 476 (2019) 1008–1015
[68] ACS Nano 2014, 8, 8, 8273–8277
[69] ACS Nano 2018, 12, 10, 10032–10044指導教授 溫偉源(Wei-Yen Woon) 審核日期 2023-7-18 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare