博碩士論文 111222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.117.107.78
姓名 許航(Hang Hsu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Growth mechanism of PECVD graphene with different discharge frequency and precursor)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前,合成大面积石墨烯的最常用方法是使用化學氣像沉積(CVD)。然而,以熱催化作為主要機制的CVD在生長的過程中通常需要高温(约1000℃)以及具有催化性質的基板幫助,這使得石墨烯薄膜的大規模生產及工業化有所限制。因此,通過電漿增強化學氣像沉積(PECVD)進行低温合成似乎是克服傳統熱催化CVD限制的解决方案。而在PECVD系统中,甲烷(CH4)因其穩定性通常被作為碳源添加於電漿中以成長石墨烯薄膜。然而較高的裂解能量限制了石墨烯在低基板温度下生長的可能性。因此,在此研究中,我們嘗試通過使用遠程微波電漿源来提高解離率並將碳源从甲烷改為乙炔來產生更多的C2自由基用來幫助石墨烯薄膜在PECVD中的生長。電漿解離所發出的發射光譜和PECVD生長石墨烯的拉曼光譜表明,遠程微波電漿能够為石墨烯生長提供足够的碳自由基,並且石墨烯的品質很大程度的取决于電漿中CH/C2的比例。並且在我们將遠程微波電漿與射頻電漿耦合後,射頻系統仍將主導生長,並限制了石墨烯生長品質。
摘要(英) For now, the most common way to synthesis large-area graphene is thermal chemical vapor deposition (CVD). However, thermal CVD typically need a high temperature around 1000℃ during the growth, which restricts mass production of graphene film and reduction of production cost. Therefore, the low temperature synthesis by plasma enhanced chemical vapor deposition (PECVD) seem to be a solution to overcome the limitation of thermal CVD. Generally, the methane plasma is used in the PECVD system for its stability. Meanwhile, the higher pyrolysis energy restricts the probability to grow graphene with low substrate temperature. Therefore, in this research, we try to improve the PECVD system by using remote Microwave plasma source to increase the ionization rate or changing the precursor from methane to acetylene to produce more C2 radicals. The optical emission spectrum of plasma and Raman spectrum of PECVD growth graphene shown that the remote MW plasma can provide sufficient carbon radicals for graphene growth and the quality of graphene is highly depending with the ratio of CH/C2 in the plasma source. Then, we find that the direct RF system will still dominate the growth after we coupled it with remote MW plasma, limited the quality of graphene.
關鍵字(中) ★ 石墨烯
★ 電漿增強化學氣像沉積
★ 二維材料
★ 低溫成長
關鍵字(英)
論文目次 Chapter 1 Introduction 1
Chapter 2 Background 2
2.1 Graphene 2
2.2 Chemical vapor deposition (CVD) graphene 7
2.2.1 Introduction 7
2.2.2 Growth mechanism of CVD on copper 7
2.2.3 Advantages and disadvantages 9
2.3 Plasma enhance Chemical vapor deposition (PECVD) 10
2.3.1 Introduction 10
2.3.2 Plasma 11
2.3.2 Plasma discharge frequency 12
2.3.2 PECVD graphene process with different precursor 13
2.4 Scanning Electron Microscopy (SEM) 16
2.5 Raman spectroscopy 17
2.5.1 Introduction 17
2.5.2 Raman scattering 17
2.5.3 Raman spectrum characteristics on graphene 21
2.6 OES 30
Chapter3 Experiment and methods 31
3.1 PECVD setup 31
3.2 Substrate pre-treatment 32
3.3 Growth process 33
3.4 Film transfer method 34
3.5 Characterizations 35
3.5.1 SEM 35
3.5.2 AFM 35
3.5.3 Raman spectroscopy 36
3.5.4 OES 36
Chapter4 Result and Discussion 37
4.1.1 Ar flow rate 38
4.1.2 H2 flow rate 41
4.1.3 Conclusion 44
4.2 Remote MW PECVD growth with CH4 44
4.2.1 H2 flow rate 45
4.3 Remote MW PECVD growth with C2H2 48
4.3.1 H2 flow rate 48
4.3.2 Growth temperature 51
4.3.3 Conclusion 54
4.4 Remote MW coupled RF-PECVD growth with CH4 54
4.4.1 H2 flow rate 55
4.4.2 Growth temperature 60
4.4.3 Conclusion 63
4.5 Compering different discharge frequency and precursor 64
4.5.1 Different discharge frequency 64
4.5.1 Different precursor 67
Chapter5 Conclusion 70
References 71
參考文獻 [1] Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81 (1), 109.
[2] Manly, B. F. J.Drawing Conclusions from Graphene. Stat. Environ. Sci. Manag. 2001, 103–132
[3] Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6 (5), 53.
[4] Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G.Raman Spectroscopy in Graphene Related Systems. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2011, p 196.
[5] Painter, G. S.; Ellis, D. E.Electronic Band Structure and Optical Properties of Graphite from a Variational Approach. Phys. Rev. B 1970, 1 (12), 4747–4752.
[6] Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A.Synthesis of Graphite Fibers and Filaments. In Graphite fibers and filaments; Springer, 1988; pp 12–34
[7] Konschuh, S.; Gmitra, M.; Fabian, J.Tight-Binding Theory of the Spin-Orbit Coupling in Graphene. Phys. Rev. B 2010, 82 (24), 245412.
[8] Deng B, Liu Z, Peng H, Toward mass production of CVD graphene films. 2019 Adv Mater 31:1800996
[9] X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268.
[10] C.-C. Yen, Y.-C. Chang, H.-C. Tsai, W.-Y. Woon, Nucleation and growth dynamics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition, Carbon 154 (2019) 420- 427
[11] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, ACS Nano 5 (2011) 6069-6076.
[12] Y.-C. Chang , Chun-Chieh Yen, Hung-Chieh Tsai, Tsung Cheng Chen, Chia-Ming Yang, Chia-Hao Chen, Wei-Yen Woon, Carbon 159 (2020) 570-578
[13] C. M. Ferreira and J. Loureiro, J. Phys. D: Appl. Phys. 17, 1175-1188 (1984)
[14] E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology, 1993, 7:10, 1091-1127
[15] Benedikt, Jan. Plasma-chemical reactions: Low pressure acetylene plasmas. Journal of Physics D: Applied Physics. (2010) 43. 043001
[16] M.Taheraslani, H.Gardeniers, Plasma Catalytic Conversion of CH4 to Alkanes, Olefins and H2 in a Packed Bed DBD Reactor, Processes 2020, 8(7), 774
[17] Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G.Raman Spectroscopy in Graphene Related Systems. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2011, p 196
[18] Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246.
[19] Beams, R.; Gustavo Can� ado, L.; Novotny, L. Raman Characterization of Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8).
[20] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
[21] Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925– 3930
[22] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004 Oct 22;306(5696):666-9.
[23] ] L.M. Malarda, M.A. Pimentaa, G. Dresselhaus b, M.S. Dresselhaus, Physics Reports 473 (2009) 51_87
[24] Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C.Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196.
[25] Vollebregt, S.; Ishihara, R.; Tichelaar, F. D.; Hou, Y.; Beenakker, C. I. M.Influence of the Growth Temperature on the First and Second-Order Raman Band Ratios and Widths of Carbon Nanotubes and Fibers. Carbon N. Y. 2012, 50 (10), 3542–3554.
[26] A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Methane dissociation process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes production, Appl. Phys. Lett. 110 (2017) 1-5
[27] Sharma, S. et al. Influence of excitation frequency on the metastable atoms and electron energy distribution function in a capacitively coupled argon discharge. Physics of Plasmas (2018): n. pag.
[28] Mohanta, A., Lanfant, B. & Leparoux, M. Induction Plasma Synthesis of Graphene Nano-flakes with In Situ Investigation of Ar–H2–CH4 Plasma by Optical Emission Spectroscopy. Plasma Chem Plasma Process 39, 1161–1179 (2019)
[29] M. Heintze, M. Magureanu, and M. Kettlitz, Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma, Journal of Applied Physics 92, 7022 (2002)
[30] Luiz Gustavo Cançado et al 2017 2D Mater. 4 025039
[31] Grisch, Frederic & Grandin, Guy-Alexandre & Messina, D. & Attal-Tretout, Brigitte. (2011). Non-Equilibrium Kinetic Studies of Plasma-Assisted Combustion using Laser-Based Diagnostics. Zeitschrift für Physikalische Chemie. 225. 1193-1205.
[32] May, Olivier et al. “Absolute cross sections for dissociative electron attachment to acetylene and diacetylene.” Physical Review A 77 (2008): 040701.
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明