參考文獻 |
[1] Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81 (1), 109.
[2] Manly, B. F. J.Drawing Conclusions from Graphene. Stat. Environ. Sci. Manag. 2001, 103–132
[3] Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6 (5), 53.
[4] Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G.Raman Spectroscopy in Graphene Related Systems. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2011, p 196.
[5] Painter, G. S.; Ellis, D. E.Electronic Band Structure and Optical Properties of Graphite from a Variational Approach. Phys. Rev. B 1970, 1 (12), 4747–4752.
[6] Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A.Synthesis of Graphite Fibers and Filaments. In Graphite fibers and filaments; Springer, 1988; pp 12–34
[7] Konschuh, S.; Gmitra, M.; Fabian, J.Tight-Binding Theory of the Spin-Orbit Coupling in Graphene. Phys. Rev. B 2010, 82 (24), 245412.
[8] Deng B, Liu Z, Peng H, Toward mass production of CVD graphene films. 2019 Adv Mater 31:1800996
[9] X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268.
[10] C.-C. Yen, Y.-C. Chang, H.-C. Tsai, W.-Y. Woon, Nucleation and growth dynamics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition, Carbon 154 (2019) 420- 427
[11] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene, ACS Nano 5 (2011) 6069-6076.
[12] Y.-C. Chang , Chun-Chieh Yen, Hung-Chieh Tsai, Tsung Cheng Chen, Chia-Ming Yang, Chia-Hao Chen, Wei-Yen Woon, Carbon 159 (2020) 570-578
[13] C. M. Ferreira and J. Loureiro, J. Phys. D: Appl. Phys. 17, 1175-1188 (1984)
[14] E.M. Liston, L. Martinu, M.R. Wertheimer, Plasma surface modification of polymers for improved adhesion: a critical review, Journal of Adhesion Science and Technology, 1993, 7:10, 1091-1127
[15] Benedikt, Jan. Plasma-chemical reactions: Low pressure acetylene plasmas. Journal of Physics D: Applied Physics. (2010) 43. 043001
[16] M.Taheraslani, H.Gardeniers, Plasma Catalytic Conversion of CH4 to Alkanes, Olefins and H2 in a Packed Bed DBD Reactor, Processes 2020, 8(7), 774
[17] Jorio, A.; Dresselhaus, M.; Saito, R.; Dresselhaus, G.Raman Spectroscopy in Graphene Related Systems. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2011, p 196
[18] Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246.
[19] Beams, R.; Gustavo Can� ado, L.; Novotny, L. Raman Characterization of Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8).
[20] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
[21] Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925– 3930
[22] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004 Oct 22;306(5696):666-9.
[23] ] L.M. Malarda, M.A. Pimentaa, G. Dresselhaus b, M.S. Dresselhaus, Physics Reports 473 (2009) 51_87
[24] Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C.Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196.
[25] Vollebregt, S.; Ishihara, R.; Tichelaar, F. D.; Hou, Y.; Beenakker, C. I. M.Influence of the Growth Temperature on the First and Second-Order Raman Band Ratios and Widths of Carbon Nanotubes and Fibers. Carbon N. Y. 2012, 50 (10), 3542–3554.
[26] A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Methane dissociation process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes production, Appl. Phys. Lett. 110 (2017) 1-5
[27] Sharma, S. et al. Influence of excitation frequency on the metastable atoms and electron energy distribution function in a capacitively coupled argon discharge. Physics of Plasmas (2018): n. pag.
[28] Mohanta, A., Lanfant, B. & Leparoux, M. Induction Plasma Synthesis of Graphene Nano-flakes with In Situ Investigation of Ar–H2–CH4 Plasma by Optical Emission Spectroscopy. Plasma Chem Plasma Process 39, 1161–1179 (2019)
[29] M. Heintze, M. Magureanu, and M. Kettlitz, Mechanism of C2 hydrocarbon formation from methane in a pulsed microwave plasma, Journal of Applied Physics 92, 7022 (2002)
[30] Luiz Gustavo Cançado et al 2017 2D Mater. 4 025039
[31] Grisch, Frederic & Grandin, Guy-Alexandre & Messina, D. & Attal-Tretout, Brigitte. (2011). Non-Equilibrium Kinetic Studies of Plasma-Assisted Combustion using Laser-Based Diagnostics. Zeitschrift für Physikalische Chemie. 225. 1193-1205.
[32] May, Olivier et al. “Absolute cross sections for dissociative electron attachment to acetylene and diacetylene.” Physical Review A 77 (2008): 040701. |