參考文獻 |
[1] World Health Organization., "World report on vision." , 2019.
[2] Cheng, C., et al., "Population-based study on prevalence and risk factors of age-related cataracts in Peitou, Taiwan." Zhonghua yi xue za zhi= Chinese medical journal; Free China ed, VOl 63, 2000, pp. 641-648.
[3] Li, L., X.-h. Wan, and G.-h. Zhao, "Meta-analysis of the risk of cataract in type 2 diabetes." BMC ophthalmology, VOl 14, 2014, pp. 1-8.
[4] Tsai, L.-H., et al., "Risk Factor Analysis of Early-Onset Cataracts in Taiwan." Journal of Clinical Medicine, VOl 11, 2022, pp. 2374.
[5] Roberts, J.E., "Ultraviolet radiation as a risk factor for cataract and macular degeneration." Eye & contact lens, VOl 37, 2011, pp. 246-249.
[6] Ye, J., et al., "Smoking and risk of age-related cataract: a meta-analysis." Investigative ophthalmology & visual science, VOl 53, 2012, pp. 3885-3895.
[7] James, E.R., "The etiology of steroid cataract." Journal of Ocular Pharmacology and Therapeutics, VOl 23, 2007, pp. 403-420.
[8] Graw, J., "Congenital hereditary cataracts." International Journal of Developmental Biology, VOl 48, 2004, pp. 1031-1044.
[9] Mylona, I., et al., "Hypertension is the prominent risk factor in cataract patients." Medicina, VOl 55, 2019, pp. 430.
[10] 中華民國衛生福利部統計處:〈全民健康保險醫療統計—西醫門診就診件數〉,2021 年,取自https://dep.mohw.gov.tw/dos/lp-5103-113-xCat-y110.html
[11] Ruan, X., et al., "Structure of the lens and its associations with the visual quality." BMJ Open Ophthalmology, VOl 5, 2020, pp. e000459.
[12] Hejtmancik, J.F. and A. Shiels, "Overview of the Lens." Progress in molecular biology and translational science, VOl 134, 2015, pp. 119-127.
[13] Naumann, G.O., Pathology of the Eye. 2012: Springer Science & Business Media.
[14] Delaye, M. and A. Tardieu, "Short-range order of crystallin proteins accounts for eye lens transparency." Nature, VOl 302, 1983, pp. 415-417.
[15] Bloemendal, H., et al., "Ageing and vision: structure, stability and function of lens crystallins." Progress in biophysics and molecular biology, VOl 86, 2004, pp. 407-485.
[16] Horwitz, J., et al., "Lens α-crystallin: function and structure." Eye, VOl 13, 1999, pp. 403-408.
[17] Timsina, R., et al., "Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes." Experimental eye research, VOl 206, 2021, pp. 108544.
[18] De Jong, W.W., J.A. Leunissen, and C. Voorter, "Evolution of the alpha-crystallin/small heat-shock protein family." Molecular biology and evolution, VOl 10, 1993, pp. 103-126.
[19] Selivanova, O.M. and O.V. Galzitskaya, "Structural and functional peculiarities of α-crystallin." Biology, VOl 9, 2020, pp. 85.
[20] Derham, B.K. and J.J. Harding, "α-Crystallin as a molecular chaperone." Progress in retinal and eye research, VOl 18, 1999, pp. 463-509.
[21] Moreau, K.L. and J.A. King, "Protein misfolding and aggregation in cataract disease and prospects for prevention." Trends in molecular medicine, VOl 18, 2012, pp. 273-282.
[22] Haley, D.A., et al., "Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies." Journal of molecular biology, VOl 298, 2000, pp. 261-272.
[23] Reddy, G.B., P.A. Kumar, and M.S. Kumar, "Chaperone‐like activity and hydrophobicity of α‐crystallin." IUBMB life, VOl 58, 2006, pp. 632-641.
[24] CARVER, J.A., et al., "Age-related changes in bovine α-crystallin and high-molecular-weight protein." Experimental eye research, VOl 63, 1996, pp. 639-647.
[25] Augusteyn, R.C., "α‐crystallin: a review of its structure and function." Clinical and Experimental Optometry, VOl 87, 2004, pp. 356-366.
[26] Slingsby, C. and N.J. Clout, "Structure of the crystallins." Eye, VOl 13, 1999, pp. 395-402.
[27] Tsvetkova, N.M., et al., "Small heat-shock proteins regulate membrane lipid polymorphism." Proceedings of the National Academy of Sciences, VOl 99, 2002, pp. 13504-13509.
[28] Janowska, M.K., et al., "Mechanisms of small heat shock proteins." Cold Spring Harbor Perspectives in Biology, VOl 11, 2019, pp. a034025.
[29] Freilich, R., et al., "Protein–protein interactions in the molecular chaperone network." Accounts of chemical research, VOl 51, 2018, pp. 940-949.
[30] Yamamoto, M., et al., "Characterization of the hydrophobic region of heat shock protein 90." The Journal of Biochemistry, VOl 110, 1991, pp. 141-145.
[31] Cobb, B.A. and J.M. Petrash, "α-Crystallin chaperone-like activity and membrane binding in age-related cataracts." Biochemistry, VOl 41, 2002, pp. 483-490.
[32] Alberts, B., et al., Essential cell biology. 2015: Garland Science
[33] D′avanzo, N., Lipid regulation of sodium channels, in Current Topics in Membranes: Elsevier, 2016. p. 353-407.
[34] Contreras, F.-X., et al., "Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes." FEBS letters, VOl 584, 2010, pp. 1779-1786.
[35] Clark, M.A., J. Choi, and M. Douglas, Biology, (OpenStax). 2018, OpenStax.
[36] Zelenka, P.S., "Lens lipids." Current eye research, VOl 3, 1984, pp. 1337-1359.
[37] Borchman, D., "Lipid conformational order and the etiology of cataract and dry eye." Journal of lipid research, VOl 62, 2021.
[38] Deeley, J.M., et al., "Human lens lipids differ markedly from those of commonly used experimental animals." Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, VOl 1781, 2008, pp. 288-298.
[39] Filippov, A., G. Orädd, and G. Lindblom, "Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers." Biophysical journal, VOl 90, 2006, pp. 2086-2092.
[40] McConnell, H.M. and A. Radhakrishnan, "Condensed complexes of cholesterol and phospholipids." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl 1610, 2003, pp. 159-173.
[41] Yang, S.-T., et al., "The role of cholesterol in membrane fusion." Chemistry and physics of lipids, VOl 199, 2016, pp. 136-143.
[42] Gao, W.-Y., P.J. Quinn, and Z.-W. Yu, "The role of sterol rings and side chain on the structure and phase behaviour of sphingomyelin bilayers." Molecular Membrane Biology, VOl 25, 2008, pp. 485-497.
[43] Zhao, L., et al., "Lanosterol reverses protein aggregation in cataracts." Nature, VOl 523, 2015, pp. 607-611.
[44] Shanmugam, P.M., et al., "Effect of lanosterol on human cataract nucleus." Indian journal of ophthalmology, VOl 63, 2015, pp. 888.
[45] Cournia, Z., G.M. Ullmann, and J.C. Smith, "Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study." The journal of physical chemistry B, VOl 111, 2007, pp. 1786-1801.
[46] Makley, L.N., et al., "Pharmacological chaperone for α-crystallin partially restores transparency in cataract models." Science, VOl 350, 2015, pp. 674-677.
[47] Pan, J., S. Tristram-Nagle, and J.F. Nagle, "Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation." Physical Review E, VOl 80, 2009, pp. 021931.
[48] Ifeanyi, F. and L. Takemoto, "Interaction of lens crystallins with lipid vesicles." Experimental eye research, VOl 52, 1991, pp. 535-538.
[49] Datiles III, M.B., et al., "Longitudinal study of age-related cataract using dynamic light scattering: loss of α-crystallin leads to nuclear cataract development." Ophthalmology, VOl 123, 2016, pp. 248-254.
[50] Coskun, O., "Separation techniques: chromatography." Northern clinics of Istanbul, VOl 3, 2016, pp. 156.
[51] Markossian, K.A., et al., "Mechanism of thermal aggregation of yeast alcohol dehydrogenase I: role of intramolecular chaperone." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl 1784, 2008, pp. 1286-1293.
[52] Stetefeld, J., S.A. McKenna, and T.R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences." Biophysical reviews, VOl 8, 2016, pp. 409-427.
[53] Kelly, S.M., T.J. Jess, and N.C. Price, "How to study proteins by circular dichroism." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl 1751, 2005, pp. 119-139.
[54] Dodero, V.I., Z.B. Quirolo, and M.A. Sequeira, "Biomolecular studies by circular dichroism." VOl, 2011.
[55] Heller, W.T. and P.A. Zolnierczuk, "The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl 1861, 2019, pp. 565-572.
[56] Huang, H.W., "Action of antimicrobial peptides: two-state model." Biochemistry, VOl 39, 2000, pp. 8347-8352.
[57] Miles, A.J. and B.A. Wallace, "Circular dichroism spectroscopy of membrane proteins." Chemical Society Reviews, VOl 45, 2016, pp. 4859-4872.
[58] Mao, D., E. Wachter, and B. Wallace, "Folding of the mitochondrial proton adenosine triphosphatase proteolipid channel in phospholipid vesicles." Biochemistry, VOl 21, 1982, pp. 4960-4968.
[59] Santhoshkumar, P. and K.K. Sharma, "Identification of a region in alcohol dehydrogenase that binds to α-crystallin during chaperone action." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, VOl 1598, 2002, pp. 115-121.
[60] Feigin, L. and D.I. Svergun, Structure analysis by small-angle X-ray and neutron scattering. Vol. 1. 1987: Springer
[61] Guinier, A., X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. 1994: Courier Corporation
[62] Engelman, D.M., "Lipid bilayer structure in the membrane of Mycoplasma laidlawii." Journal of Molecular Biology, VOl 58, 1971, pp. 153-165.
[63] Narayanan, T., J. Gummel, and M. Gradzielski, Probing the self-assembly of unilamellar vesicles using time-resolved SAXS, in Advances in planar lipid bilayers and liposomes: Elsevier, 2014. p. 171-196.
[64] Su, C.-J., et al., "Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering." Biochimica et Biophysica Acta (BBA)-Biomembranes, VOl 1828, 2013, pp. 528-534.
[65] Carrotta, R., et al., "Small angle X-ray scattering sensing membrane composition: the role of sphingolipids in membrane-amyloid β-peptide interaction." Biology, VOl 11, 2021, pp. 26.
[66] Su, C.-J., et al., "Interplay of entropy and enthalpy in peptide binding to zwitterionic phospholipid membranes as revealed from membrane thinning." Physical Chemistry Chemical Physics, VOl 20, 2018, pp. 26830-26836.
[67] Brzustowicz, M.R. and A.T. Brunger, "X-ray scattering from unilamellar lipid vesicles." Journal of applied crystallography, VOl 38, 2005, pp. 126-131.
[68] Pabst, G., et al., "Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data." Physical Review E, VOl 62, 2000, pp. 4000.
[69] Gilles, R., U. Keiderling, and A. Wiedenmann, "Silver behenate powder as a possible low-angle calibration standard for small-angle neutron scattering." Journal of applied crystallography, VOl 31, 1998, pp. 957-959.
[70] Huang, T., et al., "X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard." Journal of applied crystallography, VOl 26, 1993, pp. 180-184.
[71] Chang, Y.-Y.,et al., “Conformational changes of -crystallin protein induced by heat stress.” International Journal of Molecular Sciences, VOl 23, 2022, pp. 9347.
[72] 劉諭庭:〈細胞膜媒介麥角固醇與 α-crystallin 的作用〉。碩士論文,國立中央大學,民國 111 年 6 月。
[73] Ludtke, S., K. He, and H. Huang, "Membrane thinning caused by magainin 2." Biochemistry, VOl 34, 1995, pp. 16764-16769.
[74] Chen, F.-Y., M.-T. Lee, and H.W. Huang, "Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation." Biophysical journal, VOl 84, 2003, pp. 3751-3758. |