參考文獻 |
[1] K. H. Li, C. Tsai, and J. C. Campbell, “Investigation of rapid-thermal-oxidized porous silicon.” Appl. Phys. Lett., vol.62, pp. 3501-3503, 1993.
[2] H. Chen and X. Hou, “Passivation of porous silicon by wet thermal oxidation.” J. Appl. Phys., vol. 79, pp. 3282-3285, 1996.
[3] I. Kleps, D. Nicolaescu, C. Lungu, G. Musa, C. Bostan, and F. Caccavle, “Porous silicon field emitters for display applications.” Appl. Surface Science, vol. 111, pp. 228-232, 1997.
[4] B. Gelloz and N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode.” J. Appl. Phys., vol. 88, pp. 4319-4324, 2000.
[5] Z. An, R. K. Y. Fu, W. Li, P. Chen, and P. K. Chu, “Low-temperature photoluminescence of hydrogen Ion and plasma implanted silicon and porous silicon.” J. Appl. Phys., vol. 96, pp. 248-251, 2004.
[6] D. B. Geohegan, A. A. Puretzky, G.. Duscher, and S. J. Pennycook, “Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation.” Appl. Phys. Lett., vol. 73, no. 4, pp. 438-440, 1998.
[7] A. V. Kabashin, M. Meunier, and R. Leonelli, “Photoluminescence characterization of Si-based nanostructured films produced by pulsed laser ablation.” J. Vac. Sci. Technol. B, vol. 19, pp. 2217-2222, 2001.
[8] X. Y. Chen, Y. F. Lu, Y. H. Wu, B. J. Cho, M. H. Liu, D. Y. Dai, and W. D. Song, “Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient.” J. Appl. Phys., vol. 93, pp. 6311-6319, 2003.
[9] M. Matsuoka and S. I. Tohno, “Electroluminescence of erbium-doped silicon films as grown by ion beam epitaxy.” Appl. Phys. Lett., vol. 71, no. 1, pp. 96-98, 1997.
[10] C. F. Lin, M. J. Chen, E. Z. Liang, W. T. Liu, and C. W. Liu, “Reduced temperature dependence of luminescence from silicon due to field-induced carrier confinement.” Appl. Phys. Lett., vol. 78, no. 3, pp. 261-263, 2001.
[11] C. F. Lin, M. J. Chen, S. W. Chang, P. F. Chung, E. Z. Liang, T. W. Su, and C. W. Liu, “Electroluminescence at silicon band gap energy from mechanically pressed indium–tin–oxide/Si contact.” Appl. Phys. Lett., vol. 78, no. 13, pp. 1808-1810, 2001.
[12] M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, “Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si.” Appl. Phys. Lett., vol. 74, no. 2, pp. 182-184, 1999.
[13] C. W. Liu, M. H. Lee, M. J. Chen, I. C. Lin, and C. F. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal–oxide–silicon tunneling diodes.” Appl. Phys. Lett., vol. 76, no. 12, pp. 1516-1518, 2000.
[14] M. J. Chen, J. F. Chang, J. L. Yen, and C. S. Tsai, “Electroluminescence and photoluminescence studies on carrier radiative and nonradiative recombinations in metal-oxide-silicon tunneling diodes.” J. Appl. Phys., vol. 93, pp. 4253-4259, 2003.
[15] J. G. Mihaychuk, M. W. Denhoff, S. P. McAlister, and W. R. McKinnon, “Broad-spectrum light emission at microscopic breakdown sites in metal-insulator-silicon tunnel diodes.” J. Appl. Phys., vol. 98, pp. 54502-54510, 2005.
[16] T. S. Jen, J. W. Pan, N. F. Shin, J. W. Hong, and C. Y. Chang, “Electroluminescence characteristics and current-conduction mechanism of a-SiC:H p-i-n thin-film light-emitting diodes with barrier layer inserted at p-i interface.” IEEE Trans. On Electron Devices, vol. 41, no. 10, pp. 1761-1769, 1994.
[17] Y. A. Chen, C. F. Chiou, W. C. Tsay, L. H. Laih, J. W. Hong, and C. Y. Chang, “Optoelectronic Characteristics of a-SiC:H-Based P-I-N Thin-Film Light-Emitting Diodes with Low-Resistance and High-Reflectance N+-a-SiCGe:H Layer,” IEEE Trans. On Electron Devices, vol. 44, No. 9, pp. 1360-1366, 1997.
[18] Z. Pei, Y. R. Chang, and H. L. Hwang, “White electroluminescence from ydrogenated amorphous-SiNx thin films,” Appl. Phys. Lett., vol. 80, no. 16, pp. 2839-2841, 2002.
[19] A. Chingsungnoen, P. Kengkan, and W. Tantraporn, “Anomalous Poole-Frenkel mode of current-conduction mechanism in the p-i-n thin-film light-emitting diodes.” IEEE Trans. On Electron Devices, vol. 51, No. 6, pp. 1040-1043, 2004.
[20] M. Uchida, Y. Ohmori, T. Noguchi, T. Ohmishi, and K. Yoshino, “Color-variable light-emitting diode utilizing conducting polymer containing fluorescent dye.” Jpn. J. Appl. Phys., vol. 32, L921-L924, 1993.
[21] J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, and N. Camaioni, “Voltage-tunable-color multilayer organic light emitting diode.” Appl. Phys. Lett., vol. 28, no. 17, pp. 2317-2319, 1996.
[22] F. Wang, P. Wang, X. Fan, X. Dang, C. Zhen, and D. Zou, “Voltage-controlled multicolor emitting devices.” Appl. Phys. Lett., vol. 89, pp. 183519-183521, 2006.
[23] C. J. Liang and W. C. H. Choy, “Color tunable organic light-emitting diodes by using europium organometallic complex.” Appl. Phys. Lett., vol. 89, pp. 251108-251110, 2006.
[24] N. Narendran, “Requirements for solid-state lighting,” Lasers and Electro-Optics proceedings, vol. 1, p. 1, 2004.
[25] A. J. Steckl, J. Heikenfeld, and S. C. Allen, “Light wave coupled flat panel displays and solid-state lighting using hybrid inorganic/organic materials.” J. Display Technol., vol. 1, pp. 157-166, 2005
[26] Z. Yang, B. Hu, and F. E. Karasz, “Polymer electroluminescence using ac or reverse dc biasing.” Macromolecules, vol. 28, pp. 6151-6154, 1995.
[27] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, “High-frequency response of polymeric light-emitting diodes.” Appl. Phys. Lett., vol. 70, pp. 2022-2024, 1997.
[28] R. Osterbacka, K. M. Kallman, and H. Stubb, “Frequency response of molecularly thin alternating current light-emitting diodes.” J. Appl. Phys., vol. 83, pp. 1748-1752, 1998.
[29] J. Robertson, “Electronic structure of diamond-like carbon,” Diamond Relat. Mater., vol. 6, pp. 212-218, 1997.
[30] M. Koos, M. Veres, M. Fule, and I. Pocsik, “Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon,” Diamond Relat. Mater., vol. 11, pp. 53-58, 2002.
[31] J. Xu, J. Mei, X. Huang, W. Li, Z. Li, X. Li, and K. Chen, “The change of photoluminescence characteristics of amorphous carbon films due to hydrogen dilution,” J. Non-Cryst. Solids, vol. 338-340, pp. 481-485, 2004.
[32] C. Casiraghi, A. C. Ferrari, and J. Robertson, “Ramon spectroscopy of hydrogenated amorphous carbon,” Phys. Rev. B, vol. 72, no. 8, pp. 85401-85414, 2005.
[33] T. Heitz, C. Godet, J. E. Bouree, and B. Drevillon, “Radiative and nonradiative recombination in polymerlike a-C:H films,” Phys. Rev. B, vol. 60, no. 8, pp. 6045-6052, 1999.
[34] J. V. Anguita, W. T. Young, R. U. Khan, S. R. P. Silva, S. Haq, I. Sturland, and A. Pritchard, “Photoluminescence in low defect density a-C:H and a-C:H:N,” J. Non-Cryst. Solids, vol. 266-269, pp. 821-824, 2000.
[35] S. B. Kim, and J. F. Wager, “Electroluminescence in diamond-like carbon films,” Appl. Phys. Lett., vol. 53, no. 19, pp. 1880-1881, 1988.
[36] A. Foulani, and C. Laurent, “Wide-gap a-C:H prepared by dc glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys., vol. 80, pp. 466-471, 2003.
[37] R. Reyes, C. Legnani, P. M. R. Pinto, M. Cremona, P. J. G. de Araugo, and C. A. Achete, “Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films,” Appl. Phys. Lett., vol. 82, no. 23, pp. 4017-4019, 2003.
[38] Y. A. Chen, M. L. Hsu, L. H. Laih, J. W. Hong, and C. Y. Chaug, “Characteristics of SiC-based thin-film LED fabricated using plasma-enhanced CVD system with stainless steel mesh,” Electronics Letters, vol. 35, pp. 1274-1275,1999.
[39] M. S. Haque, H. A. Naseem, W. D. Brown, and S. S. Ang, “Hydrogenated amorphous silicon/aluminum interaction at low temperatures, “Mat. Res. Soc. Symp. Proc., Vol. 258, pp. 1037-1042, 1992.
[40] H. Matsuura, T. Okuno, H. Okushi, and K. Tanaka, “Electrical properties of n-amorphous/p-crystalline silicon heterojunctions.” J. Appl. Phys., vol. 55, pp. 1012-1019, 1984.
[41] D. Kruangam, M. Deguchi, T. Toyama, H. Okamoto, and Y. Hamakawa, “Carrier injection mechanism in a-SiC:H p-i-n junction thin-film LED,” IEEE Trans. Electron Devices, Vol. 35, No. 7, pp.957, 1988.
[42] G. Lavareda, C. Nunes, E. Fortunato, A. Amaral, and A. R. Ramos, “Properties of a-Si:H TFTs using carbonitride as dielectric.” J. Non-Cryst. Sol., vol. 338-340, pp. 797-801, 2004.
[43] S. M. Passche, T. Toyama, H. Okamoto, and Y. Hamakawa, ”Amorphous-SiC thin film p-i-n light-emitting diode using amorphous-SiN hot-carrier tunneling injection layers,” IEEE Trans. Electron Devices, Vol. 36, No.12, pp.2895, 1989.
[44] F. Giorgis, C. F. Pirri, E. Tresso, V. Rigato, S. Zandolin, and P. Rvav, “Wide band gap amorphous silicon-based alloys.” Phys. B, vol. B229, pp. 233-239, 1997.
[45] H. Y. Wey, “Surface of amorphous semiconductors and their contacts with metals.” Phys. Rev. B, vol. 13, pp. 3495-3505, 1976.
[46] B. Gan, J. A. Rusli, Q. Zhang, S. F. Yoon, V. A. Ligatchev, J. Y. K. Chew, “Thickness dependence of density of gap states in diamond films studied using space-charge-limited current,” J. Appl. Phys., vol. 89, no. 10, pp. 5747-5753, 2001.
[47] C. Summonte, R. Rizzoli, M. Bianconi, A. Desalvo, D. Iencinella, and f. Giorgis, “Wide band-gap silicon-carbon alloys deposited by very high frequency plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 96, no. 7, pp. 3987-3997, 2004.
[48] K. Mui, D. K. Basa, F. W. Smith, and R. Corderman “Optical constants of a series of amorphous hydrogenated silicon-carbon alloy films: dependence of optical response on film microstructure and evidence for homogeneous chemical ordering,” Phys. Rev. B, vol. 35, no. 15, pp. 8089-8102, 1987.
[49] J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng. R, vol. 37, pp. 129-281, 2002.
[50] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B, vol. 16, no. 8, pp. 3556-3571, 1997.
[51] J. Robertson, “Photoluminescence mechanism in amorphous hydrogenated carbon,” Diamond Relat. Mater., vol. 5, pp. 457-460, 1996.
[52] M. A. Lampert and P. Mark, Current injection in Solids. New York: Academic, 1970, chap. 2, 4, and 5.
[53] J. Frenkel, ”On prebreakdown phenomena in insulators and electronic semiconductors,” Phys. Rev., vol. 54, pp. 647-648, 1938.
[54] J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulators-metal systems,” Phys. Rev., vol. 155, no. 3, pp. 657-660, 1967.
[55] P. Mark, and T. E. Hartman, “On distinguishing between the Schottky and Poole-Frenkel effect in insulators,” in Proc. Rec. Communications Conf., Nov. 1967, pp. 2163-2164.
[56] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981, chap. 1, 5, and 7.
[57] R. H. Yeh, T. R. Yu, S. Y. Lo, and J. W. Hong, “Alternating-current white thin-film light-emitting diodes based on hydrogenated amorphous carbon layer,” IEEE Photo. Tech. Lett., vol. 18, no. 22, pp. 2341-2343, 2006.
[58] F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films grown by plasma enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films, Vol. 307, pp. 298-305, 1997.
[59] V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B, vol. 73, pp. 1953331-1953338, 2006.
[60] J. J. Mei, H. Chen, and W. Z. Shen, ”Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films,” J. Appl. Phys., vol. 100, pp. 0735161-0735169, 2006. |