博碩士論文 88541006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.217.81.135
姓名 張惠珍(Hui-Chen Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 灰色理論與模糊類神經網路之研究及應用
(Study and Application of Grey Theoryand Fuzzy Neural Networks)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是研究與分析結合基因演算法,灰色理論、模糊理論與類神經網路,並將其應用於全車之主動式懸吊系統與倒單擺系統。首先針對GM(1,1)模型提出一些定理,這些都是根據發展係數 與灰色輸入 兩個參數,來簡化求解的型式。接著以基因演算法來對此調適因子進行最佳化之搜尋,來改善預測值之殘差。
第二部分利用灰模糊控制器與類神經網路模糊控制器於全車之主動式懸吊系統設計。我們主要的控制目標是強調去改善車身振盪,經模擬結果證明,類神經網路模糊控制之主動式懸吊系統比傳統的被動式懸吊系統、模糊控制之主動式懸吊系統、及灰模糊控制之主動式懸吊系統更有效降低車身振動。同時吾人並運用灰色關聯度進行車身於不同路況的運動分析,比較各種震盪對地形變化的關聯度,所以灰色關聯度方法也不失為是一種分析工具的選擇。最後吾人結合類神經網路具有學習之優點與灰關聯分析及模糊控制器,以倒單擺系統為實例,來驗證其適應性。模擬結果如下:灰色逆傳遞學習法比傳統逆傳遞學習法的平方誤差小,且性能指標顯示亦較好。傳統逆傳遞學習法,當輸出的模糊集合分割愈細,則性能指標愈好。但灰色逆傳遞學習法與模糊集合分割數目並無絕對的關係。
摘要(英) In this dissertation, some combinations of Genetic Algorithms, Grey Theorem, Fuzzy Control, and Neural Networks are studied. Their applications to an active suspension system for a full-car and an inverted pendulum are illustrated by examples.
First, we demonstrate some basic propositions of the GM (1,1) model. The behaviors of the development coefficient and the grey input are proposed to simplify the calculation procedure. Furthermore, the implementation of the Genetic Algorithms in optimizing the generating coefficients of the Grey Model, GM(1,1), improves the prediction values of the modeling with respect to residual errors. Secondly, we present a grey-fuzzy control and a fuzzy neural networks control, respectively, to design an active suspension system for a full-car. Our primary control goal is to emphasize the amelioration of body oscillation. The results clearly indicate that the proposed fuzzy neural networks controller outperforms the passive, the fuzzy logic and grey-fuzzy controllers in providing the desired ride quality. The grey relational method is also applied to evaluate the grade of vehicle oscillation. The simulation data shows that the grey relational analysis method is a good option in the analysis of vehicle oscillation. Finally, back propagation (BP) neural networks in conjunction with a grey relational coefficient is used to discern the optimal partitions of the consequent part in fuzzy neural networks. The learning capability of the proposed method has been demonstrated using an inverted pendulum. The square errors by BP with GRC is much smaller than that of the classical BP in the simulation.
關鍵字(中) ★ 基因演算法
★ 灰色理論
★ 模糊類神經網路
★ 主動式懸吊系統
★ 全車
關鍵字(英) ★ Grey Theorem
★ Genetic Algorithms
★ full-car
★ active suspension system
★ Fuzzy Control
★ Neural Networks
★ fuzzy neural networks
論文目次 Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 5
1.3 Organization of Dissertation 6
Chapter 2 Grey Theorem 8
2.1 Introduction 8
2.2 Review of GM(1,1) Model 9
2.3 Study of Numerical Relationship Among Data in Grey
Modeling 13
2.4 Principle of Grey Relational Analysis ………………………. 17
2.5 Conclusion…………………………………………………….19
Chapter 3 Optimization of Generating Coefficients in the Grey Model
by Genetic Algorithms 20
3.1 Introduction 20
3.2 Genetic Algorithms (GA) 21
3.2.1 Adaptability of GA 22
3.2.2 Performance test of Genetic Algorithm 23
3.3 Diagnostic Checking 26
3.4 The Examples and Results of Simulation 27
3.5 Conclusion……………………………………………….…….36
Chapter 4 Grey-Fuzzy Control Design for a Full-Car Active
Suspension System 37
4.1 Introduction …………………………………………….…….37
4.2 A Quarter-Car Model……………………………………….…39
4.3 A Full-Car Model 53
4.3.1 Road Profile Model 56
4.3.2 Active Suspension Controller 57
4.3.3 System Configuration 57
4.3.4 Grey-Fuzzy Logical Control Scheme 58
4.4 Simulations and Results 61
4.4.1 Grey Relational Analysis 63
4.5 The Performance Index of VA, PA, and RA in
Grey-Fuzzy Controller……………………………………......70
4.6 Conclusion……………………………………………….…..100
Chapter 5 Fuzzy Neural Networks Application to Inverted Pendulum
and Active Suspension Systems 101
5.1 Introduction ...101
5.2 The Structure of the Fuzzy Neural Network 102
5.3 Classical Back-Propagation Algorithm 107
5.4 The BP Algorithm with GRC (BP with GRC) 109
5.5 Fuzzy Neural Networks Application to the Inverted Pendulum
System……………………………………………………… 112
5.6 Fuzzy Neural Networks Application to Active Suspension of
a Full-Car 121
5.7 Conclusion 125
Chapter 6 Conclusions 127
6.1 Conclusions 127
6.2 Future Works 129
References 130
參考文獻 [2] T. Takagi and M. Sugeno, “Fuzzy identification of systems and it’s application to modeling and control,” IEEE Trans. on Syst., Man, and Cybern., vol. 15, no. 1, pp. 116–132, 1985.
[3] S. Yasunobu, S. Miyamoto and H. Ihara, “Fuzzy control for automatic train operation system,” in Proc. 4th IFAC/IFIP/IFORS Conference on Control in Transportation System, Baden, April 1983.
[4] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis,” IEEE Trans. on Computers, vol. 26, no. 12, pp. 1182–1191, 1977.
[5] P. M. Larsen, “Industrial application of fuzzy logic control,” International Journal of Man-Machine Studies, Vol. 12, no. 1, pp. 3–10, 1980.
[6] S. G. Foda, “Fuzzy control of a quarter-car suspension system,” in Proc. 12th International Conference on Microelectronics, pp. 231–234, 2000.
[7] M. Appleyard and P. E. Wellstead, “Active suspensions: some background,” Proc. Inst. Elect. Eng. Contr. Theory Application, vol. 142, no.2, pp. 123–128, 1995.
[8] A. G. Thompson, “Optimal and suboptimal linear suspensions for road vehicle,” Vehicle System Dynamics, vol. 13, nos. 1-2, pp. 61–72, 1984.
[9] J. H. Li and T. H. S. Li, “Optimal output feedback stabilization of active suspension control using acceleration measurement,” in Proc. IEEE IECON’95 Orlando, FL, pp. 1100–1111, 1995.
[10] M. A. Salman, A. Y. Lee, and N. M. Boustany, “Reduced order design of active suspension control,” in Proc. 27th IEEE CDC, pp. 1038–1043, 1988.
[11] D. Hrovat, “Optimal active suspension structures for quarter-car vehicle models,” Automatica, vol. 26, no. 5, pp. 845–860, 1990.
[12] Y. J. Lin, Y. Q. Lu, and J. Padovan, “Fuzzy logic control of vehicle suspension system,” Int. J. Vehicle Des., vol. 14, nos. 5/6, pp. 457–470, 1993.
[13] C. S. Ting, T. H. S. Li, and F. C. Kung, “Design of fuzzy controller for active suspension system,” Mechatronics, vol. 5, no. 4, pp. 365–384, 1995.
[14] S. J. Heo, K. Park, and S. H. Hwang, “Performance and design consideration for continuously controlled semi-active suspension systems,” Int. J. Vehicle Des., vol. 23, nos. 3/4, pp. 376–389, 2000.
[15] C. S. Ting, Systematic Design Approach for Fuzzy Logic Control Systems, Ph. D. Dissertation, Department of Electrical Engineering, National Cheng Kung University, Taiwan, R. O. C., 1995.
[16] A. S. Cherry and R. P. Jones, “Fuzzy logic control of an automotive suspension system,” Proc. Inst. Elect. Eng. Contr. Theory Application, vol. 142, no. 2, pp. 149–160, 1995.
[17] E. C. Yeh and Y. J. Tsao, “A fuzzy preview control scheme of active suspension for rough road,” Int. J. Vehicle Des., vol. 15, nos. 1/2, pp. 166–180, 1994.
[18] M. V. C. Rao and V. Prahald, “A tunable fuzzy logic controller for vehicle active suspension systems,” Fuzzy Sets Syst., vol. 85, no. 1, pp. 11–21, 1997.
[19] H. W. Du and H. X. Du, “Discussion on grey theory and grey system predication,” in Proc. 4th Conference on the Grey System and Application, pp. 318–323, 1999.
[20] R. C. Luo, T. M. Chen, and K. L. Su, “Target tracking using hierarchical grey-fuzzy motion decision-making method,” IEEE Trans. on Syst., Man, and Cybern., Part A : Systems and Humans, vol. 31, no. 3, pp. 179–186, 2001.
[21] J. H. Chou and T. M. Chen, “Autonomous mobile target tracking system based on grey-fuzzy control algorithm,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 920–931, 2000.
[22] P. Y. Chen and J. M. Jou, “Adaptive arithmetic coding using fuzzy reasoning and grey prediction,” Fuzzy Sets Syst., vol. 114, no. 2, pp. 239–254, 2000.
[23] J. H. Chou, S. H. Chen, and F. Z. Lee, “Grey-fuzzy control for active suspension design,” Int. J. Vehicle Des., vol. 19, no. 1, pp. 65–77, 1998.
[24] C. T. Lin and C. S. George Lee, “Neural-network-based fuzzy logic control and decision system,” IEEE Trans. on Computers, vol. 40, no. 12, pp. 1320–1336, 1991.
[25] J. J. Buckley, Yoichi Hayashi, and Ernest Czogala, “On the equivalence of neural nets and fuzzy expert systems,” Fuzzy Sets Syst., vol. 53, pp. 129–134, 1993.
[26] C. T. Chao and C. C. Teng, “Implementation of a fuzzy inference system using a normalized fuzzy neural network,” Fuzzy Sets Syst., vol. 75, pp. 17–31, 1995.
[27] J. J. Buckley and Y. Hayashi, “Neural nets for fuzzy systems,” Fuzzy Sets Syst., vol. 71, pp. 265–276, 1995.
[28] C. T. Lin and C. S. George Lee, “Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems,” IEEE Trans. on Fuzzy Systems, vol. 2, no. 1, pp. 46–63, 1994.
[29] H. R. Berenji and Pratap Khedkar, “Learning and tuning fuzzy logic controllers through reinforcements,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 724–740, 1992.
[30] C. T. Lin, C. Jian, and C. S. George Lee, “Fuzzy adaptive learning control network with on-line neural learning,” Fuzzy Sets Syst., vol. 71, pp. 25–45, 1995.
[31] J. S. Roger Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans. on Syst., Man, and Cybern., vol. 23, no. 3, pp. 665–685, 1993.
[32] C. T. Lin, “A neural fuzzy control system with structure and parameter learning,” Fuzzy Sets Syst., vol. 70, pp. 183–212, 1995.
[33] H. Ishibuchi, K. Kwon, and H. Tanaka, “A learning algorithm of fuzzy neural networks with triangular fuzzy weights,” Fuzzy Sets Syst., vol. 71, pp. 277–293, 1995.
[34] H. Ishigami, T. Fukuda, T. Shibata, and F. Arai, “Structure optimization of fuzzy neural network by genetic algorithm,” Fuzzy Sets Syst., vol. 71, pp. 257–264, 1995.
[35] C. C. Wong and S. M. Feng, “Switching-type fuzzy controller design by genetic algorithms,” Fuzzy Sets Syst., vol. 74, pp. 175–185, 1995.
[36] A. Blanco, M. Delgado, and I. Requena, “A learning procedure to identify weighted rules by neural networks,” Fuzzy Sets Syst., vol. 69, pp. 29–36, 1995.
[37] Y. F. Yam, Tommy W. S. Chow, and C. T. Leung, “A new method in determining initial weights of feedforward neural networks for training enhancement,” Neurocomputing, vol. 16, pp. 23–32, 1995.
[38] Z. Cao, A. Kandel, and L. Li, “A new model of fuzzy reasoning,” Fuzzy Sets Syst., vol. 36, pp. 311–325, 1995.
[39] J. C. Lo and S. C. Chen, “Fuzzy modeling using hybrid neural networks,” in Proc. 13th Chinese Society of Mechanical Engineering Conference, Taipei, 1996.
[40] K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful heuristic method for generating fuzzy rules from numerical data,” Fuzzy Sets Syst., vol. 86, pp. 251–270, 1995.
[41] J. F. Shepanski, “Fast learning in artificial neural systems: multilayer perceptron training using optimal estimation,” in Proc. IEEE International Conference on Neural Networks, New York, pp. 465–472, 1988.
[42] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights,” in Proc. International Joint Conference on Neural Networks, San Diego, CA., pp. 313–315, 1988.
[43] S. Osowski, “New approach to selection of initial values of weights in neural function approximation,” Electron Letters, vol. 29, 1993.
[44] Y. F. Yam and T. W. S. Chow, “Determining initial weights of feedforward neural networks based on least squares method,” Neural Process Letters, vol. 2, 1995.
[45] Y. F. Yam and T. W. S. Chow, “A weight initialization method for improving training training speed in feedforward neural network,” Neurocomputing, vol. 30, pp. 219–232, 1988.
[46] J. Deng, “Introduction to grey system theory,” The Journal of Grey System, vol. 1, pp. 1–24, 1988,
[47] J. Luo and B. Zhang, “A study of grey forecasting and its control analysis of grain yield,” The Journal of Grey System, vol. 1, pp. 91–98, 1989.
[48] Z. Li, “Primary applications of grey system theory in the study of earthquake forecasting,” Journal of Seismology, vol. 4, pp. 27–31, 1986. (in Chinese)
[49] Y. Tamura and D. Zhang, U. Umeda, and K. Sakashita, “Load forecasting using grey dynamic model,” The Journal of Grey System, vol. 4, pp. 45–58, 1992.
[50] D. Yi and R. Yang, “Grey predictor controller for DC speed control system,” The Journal of Grey System, vol. 2, pp. 189–215, 1990.
[51] J. L. Deng, “Control problems of grey systems,” Systems Control Letters, vol. 5, pp. 288–294, 1982.
[52] J. Deng, Grey System Control, Huazhong University of Science and Technology Press, Wuhan, 1997.
[53] H. Z. Zhang and H. X. Wu, “The relationship study between adjusting factors and grey prediction,” in Proc. 5th Conference on the Grey System Theory and Application, pp. 289–298, 2000.
[54] J. Deng, Elements on Grey Theory, Huazhong University of Science and Technology Press, 2002(in Chinese)
[55] M. Mitchell, An Introduction to Genetic Algorithms, MIT press, 1996.
[56] C. H. Chen and S. H. Chen, “Adaptive genetic-neural control based on grey prediction,” in Proc. 4th Conference on the Grey System Theory and Application, pp. 45–49, 1999.
[57] Z. X. Chi, Strategic Study of Developing Intelligent Control System in Genetic Algorithm, Master Thesis, Chung Cheng Institute of Technology, Department of System Engineering, 1999.
[58] K. D. Jong, “On using genetic algorithms to search program space,” in Proc. 2nd International Conference on Genetic Algorithm and Their Application, pp. 210–216, 1999.
[59] K. D. Jong, “Adaptive system design: a genetic approach,” IEEE Trans. on Syst., Man, and Cybern., vol. SMC-10, no.9, pp. 566–574, 1980.
[60] Q. Hong, J. Hong, and Z. M. Chen, “Discussion on grey theory and grey system prediction,” in Proc. 4th Conference on the Grey System Theory and Application, pp. 65–69, 1999.
[61] C. S. Cheng, Y. T. Hsu, and C. C. Wu, “Grey neural networks,” IEICE Transactions on Fundamentals Electronics, Communication and Computer Sciences, E81-A, no.11, pp. 2433–2442, 1998.
[62] Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series – part 2,” Fuzzy Sets Syst., vol. 62, pp. 1–8, 1994.
[63] S. M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, pp. 311–319, 1996.
[64] Q. Song and B. S. Chissom, “Forecasting enrollments with fuzzy time series – part 1,” Fuzzy Sets Syst., vol. 54, pp. 1–9, 1993.
[65] Y. Wu and B. Xu, “Study on the damping fuzzy control of semi-active suspension,” in Proc. Vehicle Electronics Conference, vol. 1, pp. 66–69, 1999.
[66] J. D. Robson, “Road surface description and vehicle response,” Int. J. Vehicle Des., vol. 1, no. 1, pp. 25–35, 1979.
[67] Y. P. Kuo and T. H. S. Li, “GA-based fuzzy PI/PD controller for automotive active suspension system,” IEEE Trans. on Industrial Electrics, vol. 46, no. 6, pp. 1051–1056, 1999.
[68] R. C. Redfield, “Performance of low-bandwidth semi-active damping concepts for suspension control,” Vehicle System Dynamics, vol.20, pp. 245–267, 1991.
[69] K. B. Todd, Development and Performance Evaluation of Active Suspensions for Road Vehicle Handling, Ph.D. Dissertation, Pennsylvania State University, U.S., 1990.
[70] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, vol. 1, MIT Press, Cambridge, MA, 1986.
[71] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming-Theory and Algorithms, Wiley, New York, 1993.
[72] F. Salehi, R. Lacroix, and K. M. Wade, “Effects of learning parameters and data presentation on the performance of back-propagation networks for milk yield prediction,” Transactions of the ASAE(American Society of Agricultural Engineers), vol. 41, no. 1, pp. 253–259, 1998.
[73] T. J. Sejnowski and C. R. Rosenberg, “Parallel networks that learn to pronounce english text,” Complex Systems, vol. 1, no. 1, pp. 145–168, 1987.
[74] Y. P. Huang and C. H. Huang, “Real-valued genetic algorithms for fuzzy grey prediction system,” Fuzzy Sets Syst., vol. 87, no. 3, pp. 265–276, 1997.
[75] Y. T. Hsu and C. M. Chen, “A novel fuzzy logic system based on N-version programming,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 2, pp. 155–170, 2000.
[76] K. Q. Shi, G. W. Wu, and Y. P. Hwang, Theory of Grey Information Relation, Chuan Hwa, Taiwan, 1994.
[77] Y. C. Hu, R. S. Chen, Y. T. Hsu, and G. H. Tzeng, “Grey self-organizing feature maps,” Neurocomputing, vol. 48, pp. 863–877, 2002.
[78] H. Zhang, X. Ma, and W. Xu, “Design fuzzy controllers for complex systems with an application to 3-stage inverted pendulums,” Information Sciences, vol. 72, pp. 271–284, 1993.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2007-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明