博碩士論文 106282602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.216.90.244
姓名 李杉拉(Shahzad Ali)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Searches for Higgs pair production and probing the Higgs self-couplings in the HH→bbττ decay channel at the ATLAS Experiment and performance studies for the High-Granularity Timing Detector for ATLAS phase-2 upgrade)
相關論文
★ 費米實驗室CDFII探測器利用J/psi J/psi 衰變途徑尋找eta_b粒子之研究★ 雙頭平面PET系統的影像重建與質子治療中的深度學習應用"
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這項研究聚焦於在 CERN 大型強子對撞機(LHC)由 ATLAS 探測器記錄的質心能量為 13 TeV 的質子-質子碰撞中,使用 140 fb−1 數據尋找 H H → b¯b τ+τ− 非共振希格斯玻色子對產生的信號。分析策略旨在探測希格斯玻色子 κλ 和四重 H H V V (V = W, Z ) 交互作用強度 κ2V 的異常值。然而,在標準模型 (SM) 預期的背景中未觀察到顯著超出的訊號。在 95% 的信心水準下,觀測到的 (期望的) 雙希格斯玻色子的產生率上限為標準模型預測的 5.9 (3.1) 倍。在假設所有其他希格斯玻色子交互作用固定為標準模型預測的情况下, 交互作用 強度被限制在觀測到的 (期望的) 95% 信賴區間 −3.2 < κλ < 9.1 (−2.4 < κλ < 9.2) −0.5 < κ2V < 2.7(−0.2 < κ2V < 2.4) 内。該研究還包括使用在 2018 年至 2019 年在 CERN SPS 和 DESY 收集的測試數據,對具有 50 μ m 有效厚度的低增益雪崩探測器 (LGADs) 進行性能評估,重點關注 ATLAS 第二階段升级的高粒度定時探測器 (HGTD)。HGTD 旨在通過精確測量軌跡時間,分辨率約為 30 ps 到 50 ps, 提高粒子-頂點分配的精度,從而減輕 LHC 高亮度運行期間的堆積效應。
摘要(英) This study focuses on searches for non-resonant Higgs boson pair production in the HH → b¯bτ+τ− channel using 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large
Hadron Collider (LHC). The analysis strategy aims to probe anomalous values of the Higgs boson (H) self-coupling modifier κλ and quartic HHV V (V = W,Z) coupling modifier κ2V. However, No significant excess above the expected background from Standard Model (SM) processes is observed. Observed (expected) upper limit at 95% confidence-level on the di-Higgs boson production rate is set at 5.9 (3.1) times the SM prediction. The coupling modifiers are constrained
within an observed (expected) 95% confidence interval of −3.2 < κλ < 9.1 (−2.4 < κλ < 9.2) and −0.5 < κ2V < 2.7 (−0.2 < κ2V < 2.4), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The study also includes performance evaluations of Low Gain Avalanche Detectors (LGADs) with a 50 μm active thickness using testbeam data collected at CERN SPS and DESY between 2018 and 2019, focusing on the High-Granularity Timing Detector (HGTD) for the ATLAS phase-2 upgrade. The HGTD aims to enhance particle-vertex assignments by precisely measuring track time with resolutions ranging from approximately 30 ps to 50 ps, thereby mitigating pile-up effects during the High-Luminosity phase of the LHC operations.
論文目次 Contents
Acknowledgments xi
1 The Standard Model and the Higgs boson 1
1.1 Particles in the Standard Model . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Matter Particles . . . . . . . . . . . . . . . . . . . . . . . . . 2
Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Gauge Theories in the Standard Model . . . . . . . . . . . . . . . . 5
1.2.1 Quantum Electrodynamics (QED) . . . . . . . . . . . . . . 6
Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . 7
Renormalization . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Quantum Chromodynamics (QCD) . . . . . . . . . . . . . 8
1.2.3 Electroweak Theory . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Spontaneous symmetry breaking and The Brout-Englert-Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Symmetries of the vacuum state . . . . . . . . . . . . . . . 13
Gauge boson masses and the Higgs boson . . . . . . . . . 15
1.4 Fermion Masses and Yukawa Coupling . . . . . . . . . . . . . . . 21
1.5 The Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.1 Higgs Production Modes . . . . . . . . . . . . . . . . . . . 23
1.5.2 Higgs Decay Modes . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 SM Higgs boson pair production at the LHC . . . . . . . . 26
1.6 Limitations of the Standard Model . . . . . . . . . . . . . . . . . . 29
2 The ATLAS detector at the LHC 33
2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . 34
2.1.1 LHC Machine Overview . . . . . . . . . . . . . . . . . . . . 35
2.1.2 The Operational Timetable of the LHC . . . . . . . . . . . . 37
2.2 Simulations and proton-proton process in physics . . . . . . . . . 39
2.2.1 Physics of pp collisions . . . . . . . . . . . . . . . . . . . . . 39
2.3 The ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 ATLAS Coordinate Framework . . . . . . . . . . . . . . . . . . . . 44
2.4.1 The ATLAS Magnetic System . . . . . . . . . . . . . . . . . 47
2.4.2 Inner detector . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Pixel detector and the insertable B-Layer (IBL) . . . . . . . 49
SCT: SemiConductor Tracker . . . . . . . . . . . . . . . . . 50
TRT: Transition Radiation Tracker . . . . . . . . . . . . . . 50
Electromagnetic Calorimeter (ECal) . . . . . . . . . . . . . 52
Hadronic Calorimeter (HCal) . . . . . . . . . . . . . . . . . 54
2.4.3 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . 56
3 Physics objects reconstruction in ATLAS 59
3.1 Track and vertex reconstruction . . . . . . . . . . . . . . . . . . . . 60
3.2 Electron reconstruction and Identification . . . . . . . . . . . . . . 62
3.3 Muon reconstruction and Identification . . . . . . . . . . . . . . . 63
3.4 Jet reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Identification of b-jets: b-tagging . . . . . . . . . . . . . . . 68
Muon-in-jet and the PtReco corrections . . . . . . . . . . . 71
3.5 Missing transverse energy . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Reconstruction and identification of τ leptons . . . . . . . . . . . . 73
3.6.1 τ leptonic decay . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.2 Hadronic Decays of τ Leptons . . . . . . . . . . . . . . . . 74
xivSeed jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Vertex Association . . . . . . . . . . . . . . . . . . . . . . . 75
Track selection . . . . . . . . . . . . . . . . . . . . . . . . . 76
Energy calibration . . . . . . . . . . . . . . . . . . . . . . . 76
Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Reconstruction of Di-Tau Mass . . . . . . . . . . . . . . . . . . . . 77
4 Searches for Higgs bosons pair production in the b¯bτ +τ− final state with
140 fb−1 of 13 TeV pp collision data in ATLAS 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Data and Monte Carlo samples . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Signal samples . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Background samples . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Object selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.1 τlepτhad event selection . . . . . . . . . . . . . . . . . . . . . 94
4.5.2 τhadτhad event selection . . . . . . . . . . . . . . . . . . . . . 95
4.6 Event Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7 Z+HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8 Background estimation . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.8.1 tt¯Background Estimations with true-τhad Candidates . . . 102
4.8.2 Background with a jet misidentified as a τhad in the τlepτhad
channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Fake Factor Method . . . . . . . . . . . . . . . . . . . . . . 103
tt¯background reweighting . . . . . . . . . . . . . . . . . . 106
Fake factor calculation . . . . . . . . . . . . . . . . . . . . . 107
Fake factor method validation . . . . . . . . . . . . . . . . 111
4.8.3 Fake- τhad-vis background in the τhad τhad channel . . . . . 113
Fake- τhad-vis background from multi-jet production . . . . 113
Fake-τhad-vis Background from Multi-jet Production . . . . 113
Fake- τhad-vis background from tt¯production . . . . . . . . 117
4.9 Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.10 Introduction to Boosted Decision Trees (BDT) . . . . . . . . . . . . 119
4.10.1 General MVA and optimisation strategy . . . . . . . . . . . 121
Folding strategy . . . . . . . . . . . . . . . . . . . . . . . . . 121
Optimization of Hyperparameters . . . . . . . . . . . . . . 122
Selection of Input Variables . . . . . . . . . . . . . . . . . . 123
4.11 bbτ τ -Analysis MVA strategies . . . . . . . . . . . . . . . . . . . . . 124
4.11.1 ggF/VBF BDT . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Kinematic variable optimisation . . . . . . . . . . . . . . . 125
Hyperparameter optimisation . . . . . . . . . . . . . . . . 126
4.11.2 Signal region MVA Discriminants . . . . . . . . . . . . . . 128
τhadτhad pre-fit MVA variables modelling . . . . . . . . . . 134
τlepτhad-SLT pre-fit MVA variables modelling . . . . . . . . 134
τlepτhad-LTT pre-fit MVA variables modelling . . . . . . . . 134
4.12 Systematic uncertainities . . . . . . . . . . . . . . . . . . . . . . . . 141
4.12.1 Experimental uncertiainities . . . . . . . . . . . . . . . . . 141
Luminosity and pile-up . . . . . . . . . . . . . . . . . . . . 141
Trigger requirements . . . . . . . . . . . . . . . . . . . . . . 141
Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
b-tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
τhad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Background Modeling Uncertainties for MC-Based Processes143
Uncertainties on tt¯ . . . . . . . . . . . . . . . . . . . . . . . 145
Uncertainties for Z + HF Processes . . . . . . . . . . . . . . 145
4.12.2 Uncertainties in Signal Modeling . . . . . . . . . . . . . . . 146
Estimates for Other MC-Based Backgrounds . . . . . . . . 147
4.13 Data-driven background modelling uncertianities . . . . . . . . . 147
4.13.1 Processes with fake- τhad candidates in the τlep τhad channel 147
4.13.2 Processes with fake- τhad candidates in the τhad τhad channel 148
Modelling of the multijet background . . . . . . . . . . . . 148
Modeling of the tt¯ Background with Simulated τhad Candidates . . . . . . . . . . . . . . . . . . . . . . . . 149
4.14 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.14.1 Profile Likelihood Ratio . . . . . . . . . . . . . . . . . . . . 151
Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Exclusion Limit . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.15 Fit Model for HH → b
¯bτ +τ
− . . . . . . . . . . . . . . . . . . . . . . 155
4.15.1 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.15.2 Z+HF CR fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5 Results and Future Prospects 161
5.1 bbτlepτhad channel results . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 bbτhadτhad channel results . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3 Combined Results for b
¯bτ +τ
− analysis . . . . . . . . . . . . . . . . 167
5.4 Future prospects of the Analysis . . . . . . . . . . . . . . . . . . . 170
6 ATLAS upgrade for HL-LHC: Performance evaluation of Low Gain Avalanche
Diodes for the High Granularity Timing Detector 173
6.1 The High Luminosity upgrade program for LHC . . . . . . . . . . 173
6.2 The Next Phase: ATLAS Upgrade with High-Granularity Timing
Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2.1 Preparing ATLAS for the future – The ATLAS phase 2 upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2.2 The High-Granularity Timing Detector (HGTD) in ATLAS
Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3 Performance Evaluation of the Low Gain Avalanche Detectors in
Test Beam at CERN and DESY . . . . . . . . . . . . . . . . . . . . . 180
6.4 Sensor Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.5 Low Gain Avalanche Detectors . . . . . . . . . . . . . . . . . . . . 181
6.5.1 Radiation Effects . . . . . . . . . . . . . . . . . . . . . . . . 183
6.5.2 I-V and C-V Measurements . . . . . . . . . . . . . . . . . . 184
6.6 Experimental Setups for Test Beams . . . . . . . . . . . . . . . . . 187
6.6.1 Waveform Analysis . . . . . . . . . . . . . . . . . . . . . . . 187
6.6.2 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . 189
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.7.1 Collected Charge . . . . . . . . . . . . . . . . . . . . . . . . 192
6.7.2 Charge Uniformity . . . . . . . . . . . . . . . . . . . . . . . 194
6.7.3 Time Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
參考文獻 [1] “Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC”. In: (). https : / / www . sciencedirect .
com/science/article/pii/S0370269312008581. DOI: https:
/ / doi . org / 10 . 1016 / j . physletb . 2012 . 08 . 021. URL:https://www.sciencedirect.com/science/article/pii/
S0370269312008581.
[2] “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”. In: (). https :
/ / www . sciencedirect . com / science / article / pii /
S037026931200857X. DOI: https : / / doi . org / 10 . 1016 / j .
physletb.2012.08.020. URL: https://www.sciencedirect.
com/science/article/pii/S037026931200857X.
[3] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Phys. Rev. Lett. 13 (9 1964). https://link.aps.org/
doi/10.1103/PhysRevLett.13.321, pp. 321–323. DOI: 10.1103/
PhysRevLett.13.321. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.13.321.
[4] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
In: Phys. Rev. Lett. 13 (16 1964). https : / / link . aps . org / doi /
10 . 1103 / PhysRevLett . 13 . 508, pp. 508–509. DOI: 10 . 1103 /
PhysRevLett.13.508. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.13.508.
[5] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless
Bosons”. In: Phys. Rev. 145 (4 1966), pp. 1156–1163. DOI: 10 . 1103 /
PhysRev.145.1156. URL: https://link.aps.org/doi/10.
1103/PhysRev.145.1156.
[6] G.C. Branco, P.M. Ferreira, and L. Lavoura .. “Theory and phenomenology
of two-Higgs-doublet models”. In: Physics Reports 516.1 (2012).
https : / / www . sciencedirect . com / science / article /
pii/S0370157312000695, pp. 1–102. ISSN: 0370-1573. DOI: https:
/ / doi . org / 10 . 1016 / j . physrep . 2012 . 02 . 002. URL:
https://www.sciencedirect.com/science/article/pii/
S0370157312000695.
[7] Lisa Randall and Raman Sundrum. “Large Mass Hierarchy from a Small
Extra Dimension”. In: Phys. Rev. Lett. 83 (17 1999). https://link.
aps.org/doi/10.1103/PhysRevLett.83.3370, pp. 3370–3373.
DOI: 10.1103/PhysRevLett.83.3370. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.83.3370.
[8] “Technical Design Report for the ATLAS Inner Tracker Strip Detector”.
In: (Apr. 2017). URL: https://cds.cern.ch/record/2257755.
URL: https://cds.cern.ch/record/2257755.
[9] O Brüning and L Rossi. “The High Luminosity Large Hadron Collider:
The New Machine for Illuminating the Mysteries of Universe”.
In: World Scientific Publishing Company Pte Limited. Advanced Series
on Directions in High Energy Physics (2015). URL: https://books.
google.com/books?id=8pJEDwAAQBAJ.
[10] C. Agapopoulou et al. “Performance in beam tests of irradiated Low Gain
Avalanche Detectors for the ATLAS High Granularity Timing Detector”.
In: JINST (). URL: https://iopscience.iop.org/article/10.
1088/1748-0221/17/09/P09026. DOI: 10.1088/1748-0221/17/
09/P09026.
[11] ATLAS Collaboration. “Search for resonant and non-resonant Higgs boson
pair production in the b¯bτ+τ−decay channel using 13 TeV pp collision
data from the ATLAS detector”. In: JHEP (). URL: https : / /
link . springer . com / article / 10 . 1007 / JHEP07(2023 ) 040.
URL: https : / / link . springer . com / article / 10 . 1007 /
JHEP07(2023)040.
[12] “Review of Particle Physics”. In: PhysRevD.98.030001 (). URL: https:
//link.aps.org/doi/10.1103. URL: https://link.aps.org/
doi/10.1103.
[13] Jeffrey Goldstone, Abdus Salam, and StevenWeinberg. “Broken Symmetries”.
In: Physical Review 127 (3 1962), pp. 965–970. DOI: 10 . 1103 /
PhysRev.127.965. URL: https://link.aps.org/doi/10.1103/
PhysRev.127.965.
[14] W. Bentz et al. “Reassessment of the NuTeV determination of the weak
mixing angle”. In: https://doi.org/10.1016/j.physletb.2010.09.001 693
(2010), pp. 462–466. DOI: 10.1016/j.physletb.2010.09.001. arXiv:
0908.3198 [nucl-th].
[15] D de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. Deciphering
the Nature of the Higgs Sector”. In: (2016). arXiv: 1610.07922
[hep-ph].
[16] Public plots. “LHC Higgs Cross Section Working Group”. In: (). URL:
https : / / twiki . cern . ch / twiki / bin / view / LHCPhysics /
HiggsXSBR. URL: https://twiki.cern.ch/twiki/bin/view/
LHCPhysics/HiggsXSBR.
[17] CERN. “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature
of the Higgs Sector”. In: CERN Yellow Reports: Monographs (). URL:
https://e-publishing.cern.ch/index.php/CYRM/issue/
view/32.
[18] LHC Higgs Cross Section Working Group. “LHC Higgs Cross Section
Working Group”. In: LHC Physics Analysis Summary (). URL: https:
//twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH.
[19] J. Baglio et al. “gg → HH: Combined Uncertainties”. In: Physics Letters B
(Aug. 2020), 056002 (2020). URL: https://cds.cern.ch/record/
2729029.
[20] G. W. Bennett et al. (Muon g 2 Collaboration).
E821 muon anomalous magnetic moment. 2006. URL: https : / /
journals.aps.org/prd/abstract/10.1103/PhysRevD.73.
072003.
[21] BaBar Collaboration. “Evidence for an excess of ¯B →D(∗)τ− ¯ ντ Decays.
arXiv:1205.5442v2 [hep-ex]”. In: Physical Review Letters 108 (2012),
p. 211801. DOI: 10.1103/PhysRevLett.108.211801. URL: https:
//arxiv.org/abs/1205.5442v2.
[22] BaBar Collaboration. “Measurement of an excess of ¯B →D(∗)τ− ¯ ντ decays
and implications for charged Higgs bosons. Phys. Rev. D 88, 072012”. In:
Physical Review D 88 (2013), p. 072012. DOI: 10.1103/PhysRevD.88.
072012. URL: https://journals.aps.org/prd/abstract/10.
1103/PhysRevD.88.072012.
[23] Belle Collaboration. “Measurement of the branching ratio of ¯B →D(∗)τ− ¯ ντ
relative to ¯B →D(∗)l− ¯ νl decays with hadronic tagging at Belle Phys. Rev.
D 92, 072014”. In: Physical Review D 92 (2014), p. 072014. DOI: 10.1103/
PhysRevD.92.072014. URL: https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.92.072014.
[24] Belle Collaboration. “Measurement of the branching ratio of
B¯0→D(∗+)τ−ν¯τ relative to B¯0→D(∗+)l− ¯ νl decays with a semileptonic
tagging method. Phys. Rev. D 94, 072007”. In: Physical Review D 94
(2016), p. 072007. DOI: 10 . 1103 / PhysRevD . 94 . 072007. URL:
https : / / journals . aps . org / prd / abstract / 10 . 1103 /
PhysRevD.94.072007.
[25] LHCb Collaboration. “Measurement of the Ratio of Branching Fractions
B(B
0
→ D∗+τ−ντ )/B(B
0
→ D∗+μ−νμ)”. In: Phys. Rev. Lett. 115 (2015),
p. 111803. DOI: 10.1103/PhysRevLett.115.111803. URL: https:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.
115.111803.
[26] LHCb Collaboration. “Measurement of CP-Averaged Observables in the
B0→K0∗μ+μ− Decay”. In: Phys. Rev. Lett. 125 (2020), p. 011802. DOI: 10.
1103/PhysRevLett.125.011802. URL: https://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.125.011802.
[27] C. Bambi and A. D. Dolgov. “Introduction to Particle Cosmology - The
Standard Model of Cosmology and its Open Problems”. In: (2016). ISBN
978-3-662-48078-6.
[28] ATLAS Collaboration. “ATLAS detector and physics performance: Technical
Design Report, 1”. In: CERN Report (1999). URL: https://cds.
cern.ch/record/391176.
[29] ATLAS Collaboration. “ATLAS detector and physics performance: Technical
Design Report, 2”. In: CERN Report (1999). URL: https://cds.
cern.ch/record/391177.
[30] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: JINST 3 (2008), S08003. DOI: 10 . 1088 / 1748 -
0221 / 3 / 08 / S08003. URL: https : / / iopscience . iop . org /
article/10.1088/1748-0221/3/08/S08003.
[31] Lyndon Evans and Philip Bryant. “LHC Machine”. In: JINST 3 (2008),
S08001. DOI: 10.1088/1748- 0221/3/08/S08001. URL: https:
//iopscience.iop.org/article/10.1088/1748-0221/3/08/
S08001.
[32] The CMS Collaboration. “The CMS experiment at the CERN LHC”. In:
JINST 3 (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08004.
[33] The ALICE Collaboration. “The ALICE experiment at the CERN LHC”.
In: JINST 3 (2008), S08002. DOI: 10.1088/1748-0221/3/08/S08002.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08002.
[34] The LHCb Collaboration. “The LHCb experiment at the CERN LHC”. In:
JINST 3 (2008), S08005. DOI: 10.1088/1748-0221/3/08/S08005.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08005.
[35] The TOTEM Collaboration. “The TOTEM experiment at the CERN
LHC”. In: JINST 3 (2008), S08007. DOI: 10 . 1088 / 1748 - 0221 / 3 /
08/S08007. URL: https://iopscience.iop.org/article/10.
1088/1748-0221/3/08/S08007.
[36] MoEDAL Collaboration. “Technical Design Report of the MoEDAL Experiment”.
In: CERN Report (). DOI: https : / / cds . cern . ch /
record/1181486. URL: https://cds.cern.ch/record/1181486.
[37] The LHCf Collaboration. “The LHCf experiment at the CERN LHC”. In:
JINST 3 (2008), S08006. DOI: 10.1088/1748-0221/3/08/S08006.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08006.
[38] ATLAS Collaboration. “ATLAS Luminosity Results for Run-2 of the
LHC”. In: ATLAS Public Results (Available online). URL: https :
/ / twiki . cern . ch / twiki / bin / view / AtlasPublic /
LuminosityPublicResultsRun2.
[39] John C. Collins and Davison E. Soper. “Parton distribution and decay
functions”. In: Nuclear Physics B 194.3 (1982), pp. 445–492. ISSN: 0550-
3213. DOI: 10 . 1016 / 0550 - 3213(82 ) 90021 - 9. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321382900219.
[40] A. D. Martin et al. “Parton distributions for the LHC”. In:
European Physical Journal C 63.2 (2009), pp. 189–285. DOI: 10.1140/
epjc/s10052-009-1072-5. URL: https://link.springer.com/
article/10.1140/epjc/s10052-009-1072-5.
[41] G. Altarelli and G. Parisi. “Asymptotic freedom in parton language”.
In: Nuclear Physics B 126.2 (1977), pp. 298–318. ISSN: 0550-
3213. DOI: 10 . 1016 / 0550 - 3213(77 ) 90384 - 4. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321377903844.
[42] Joao Pequenao. “Computer generated image of the whole ATLAS detector”.
In: CERN Document Server (Available online). URL: https://
cds.cern.ch/record/1095924.
[43] ATLAS Collaboration. “ATLAS central solenoid: Technical Design Report”.
In: CERN Document Server (1997). URL: https://cds.cern.
ch/record/331067.
[44] ATLAS Collaboration. “ATLAS inner detector: Technical Design Report,
1”. In: CERN Document Server (1997). URL: https://cds.cern.ch/
record/331063.
[45] Joao Pequenao. “Computer generated image of the ATLAS inner detector”.
In: CERN Document Server (). URL: https://cds.cern.ch/
record/1095926.
[46] ATLAS Collaboration. “ATLAS Insertable B-Layer: Technical Design Report”.
In: CERN Document Server (2010). URL: https://cds.cern.
ch/record/331069.
[47] Joao Pequenao. “Computer Generated image of the ATLAS calorimeter”.
In: CERN Document Server (). URL: https://cds.cern.ch/record/
1095927.
[48] ATLAS Collaboration. “ATLAS muon spectrometer: Technical Design
Report, 2”. In: CERN Document Server (1997). URL: https : / / cds .
cern.ch/record/331068.
[49] ATLAS Collaboration. Performance of the ATLAS Trigger System in 2015.
2015. URL: https://cds.cern.ch/record/2235584.
[50] Joao Pequenao. “How ATLAS detects particles: diagram of particle paths
in the detector”. In: CERN Document Server (). URL: https://cds.
cern.ch/record/1505342.
[51] ATLAS Collaboration. “Performance of the ATLAS track reconstruction
algorithms in dense environments in LHC Run 2”. In:
European Physical Journal C 77.5 (2017), p. 285. URL: https://link.
springer.com/article/10.1140/epjc/s10052-017-5225-7.
[52] E. Belau, R. Klanner, and M. Riebesell. “Charge collection in silicon strip
detectors”. In: Nuclear Instruments 223.2-3 (1984), pp. 358–361. ISSN:
0167-5087. DOI: https : / / doi . org / 10 . 1016 / 0167 - 5087(84 )
90279- 5. URL: https://www.sciencedirect.com/science/
article/pii/0167508783905914.
[53] R. Frühwirth. “Application of Kalman filtering to track and vertex fitting”.
In: Nuclear Instruments 262.2 (1987), pp. 444–450. ISSN: 0168-9002.
DOI: https://doi.org/10.1016/0168-9002(87)90887-4. URL:
https://www.sciencedirect.com/science/article/pii/
0168900287908874.
[54] ATLAS Collaboration. “The new ATLAS track reconstruction (NEWT)”.
In: Journal of Physics: Conference Series, Volume 119, 032014 (2019).
URL: https://iopscience.iop.org/article/10.1088/1742-
6596/119/3/032014.
[55] ATLAS Collaboration. “Performance of primary vertex reconstruction
in proton-proton collisions at √s = 7 TeV in the ATLAS experiment”.
In: ATLAS-CONF-2010-069 (2010). URL: https : / / cds . cern . ch /record/1281344.
[56] ATLAS Collaboration. “Reconstruction of primary vertices at the ATLAS
experiment in Run 1 proton–proton collisions at the LHC”.
In: European Physical Journal C, Volume 77, Article 332 (2017). URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-017-4887-5.
[57] ATLAS Collaboration. “Electron reconstruction and identification
in the ATLAS experiment using the 2015 and 2016
LHC proton-proton collision data at √s = 13 TeV”. In:
European Physical Journal C, Volume 79, Article 639 (2019). URL:
https://arxiv.org/abs/1902.04655.
[58] ATLAS Collaboration. “Electron and photon energy calibration
with the ATLAS detector using LHC Run 1 data”. In:
European Physical Journal C, Volume 74, Article 3071 (2014). URL:
https://arxiv.org/abs/1407.5063.
[59] ATLAS Collaboration. “Electron and photon energy calibration with
the ATLAS detector using 2015-2016 LHC proton-proton collision
data”. In: European Physical Journal C, Volume 74, Article 3071 (2018).
URL: https://arxiv.org/abs/1812.03848.
[60] ATLAS Collaboration. “Muon reconstruction performance of the ATLAS
detector in proton-proton collision data at √s = 13 TeV”. In:
Eur. Phys. J. C 76 (2016), p. 292. DOI: 10.1140/epjc/s10052-016-
4120 - y. arXiv: 1603 . 05598 [hep-ex]. URL: https : / / link .
springer.com/article/10.1140/epjc/s10052-016-4120-y.
[61] ATLAS Collaboration. “Measurement of the muon reconstruction performance
of the ATLAS detector using 2011 and 2012 LHC proton-proton
collision data”. In: Eur. Phys. J. C 74 (2014), p. 3130. DOI: 10 . 1140 /
epjc / s10052 - 014 - 3130 - x. arXiv: 1407 . 3935 [hep-ex]. URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-014-3130-x.
[62] Gavin P. Salam. “Towards Jetography”. In: Eur. Phys. J. C 67 (2010),
pp. 637–686. DOI: 10 . 1140 / epjc / s10052 - 010 - 1314 - 6. arXiv:
0906.1833 [hep-ph].
[63] T. Carli, K. Rabbertz, and S. Schumann. “Studies of Quantum Chromodynamics
at the LHC”. In: Springer, Cham (2015). URL: https://link.
springer.com/chapter/10.1007/978-3-319-15001-7\_5.
[64] Georges Aad et al. “Topological cell clustering in the ATLAS calorimeters
and its performance in LHC Run 1”. In: Eur. Phys. J. C 77 (2017), p. 490.
DOI: 10.1140/epjc/s10052- 017- 5004- 5. arXiv: 1603.02934
[hep-ex].
[65] M. Cacciari, G. P. Salam, and G. Soyez. “The anti-kt jet clustering algorithm”.
In: JHEP 04 (2008), p. 063. URL: https://iopscience.iop.
org/article/10.1088/1126-6708/2008/04/063.
[66] Morad Aaboud et al. “Determination of jet calibration and energy resolution
in proton-proton collisions at √s = 8 TeV using the ATLAS detector”.
In: Eur. Phys. J. C 80.12 (2020), p. 1104. DOI: 10.1140/epjc/
s10052-020-08477-8. arXiv: 1910.04482 [hep-ex].
[67] ATLAS Collaboration. “Jet energy scale measurements and their systematic
uncertainties in proton-proton collisions at √s = 13 TeV with the
ATLAS detector”. In: Phys. Rev. D 96 (7 2017), p. 072002. DOI: 10.1103/
PhysRevD.96.072002. URL: https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.96.072002.
[68] Matteo Cacciari and Gavin P. Salam. “Pileup subtraction using jet areas”.
In: Physics Letters B 659.1 (2008), pp. 119–126. ISSN: 0370-2693.
DOI: 10 . 1016 / j . physletb . 2007 . 09 . 077. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0370269307011094.
[69] ATLAS Collaboration. “Tagging and suppression of pileup jets”. In:
ATLAS-CONF-2014-018 (2014). URL: https : / / cds . cern . ch /
record/1700870.
[70] ATLAS Collaboration. “ATLAS b-jet identification performance and efficiency
measurement with t¯t events in pp collisions at √s = 13 TeV”.
In: Eur. Phys. J. C 79 (2019), p. 970. DOI: 10 . 1140 / epjc / s10052 -
019-7450-8. arXiv: 1907.05120 [hep-ex]. URL: https://link.
springer.com/article/10.1140/epjc/s10052-019-7450-8.
[71] ATLAS Collaboration. “Optimization and performance studies of
the ATLAS b-tagging algorithms for the 2017-18 LHC run”. In:
ATL-PHYS-PUB-2017-013 (2017). URL: https : / / cds . cern . ch /
record/2273281.
[72] ATLAS Collaboration. “Identification of Jets Containing b-Hadrons with
Recurrent Neural Networks at the ATLAS Experiment”. In: (2017). URL:
https://cds.cern.ch/record/2255226.
[73] ATLAS Collaboration. “Evidence for the H → b¯b decay with the ATLAS
detector”. In: JHEP 12 (2017), p. 024. DOI: 10.1007/JHEP12(2017)
024. URL: https://link.springer.com/article/10.1007/
JHEP12(2017)024.
[74] Morad Aaboud et al. “Performance of missing transverse momentum reconstruction
with the ATLAS detector using proton-proton collisions at
√s = 13 TeV”. In: Eur. Phys. J. C 78.11 (2018), p. 903. DOI: 10.1140/
epjc/s10052- 018- 6288- 9. arXiv: 1802.08168 [hep-ex]. URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-018-6288-9.
[75] ATLAS Collaboration. “Reconstruction, Energy Calibration, and Identification
of Hadronically Decaying Tau Leptons in the ATLAS Experiment
for Run-2 of the LHC”. In: ATL-PHYS-PUB-2015-045 (2015). URL:
https://cds.cern.ch/record/2064383.
[76] ATLAS Collaboration. “Identification of hadronic tau lepton decays
using neural networks in the ATLAS experiment”. In:
ATL-PHYS-PUB-2019-033 (2019). URL: https : / / cds . cern . ch /
record/2688062.
[77] A. Elagin et al. “A new mass reconstruction
technique for resonances decaying to τ τ ”. In:
Nuclear Instruments and Methods in Physics Research Section A 654.1
(2011), pp. 481–489. ISSN: 0168-9002. DOI: 10.1016/j.nima.2011.
07.009. URL: https://doi.org/10.1016/j.nima.2011.07.009.
[78] ATLAS Collaboration. “Search for non-resonant Higgs boson pair
production in the 2b + 2ℓ + Emiss
T final state in pp collisions at
√s = 13TeV with the ATLAS detector, ATLAS-CONF-2023-064”. In:
ATLAS-CONF-2023-064 (). URL: https://cds.cern.ch/record/
2873518.
[79] ATLAS Collaboration. “Search for resonant and non-resonant Higgs boson
pair production in the b¯bτ+τ− decay channel using 13 TeV pp collision
data from the ATLAS detector”. In: arXiv:2209.10910 [hep-ex] (2022).
arXiv: 2209.10910 [hep-ex]. URL: https://arxiv.org/abs/
2209.10910.
[80] ATLAS Collaboration. “Combination of searches for non-resonant and
resonant Higgs boson pair production in the b¯bγγ, b¯bτ+τ−, and b¯bb¯b decay
channels using pp collisions at √s = 13 TeV with the ATLAS detector”.
In: ATLAS-CONF-2021-052 (2021). URL: https://cds.cern.ch/
record/2786865.
[81] ATLAS Collaboration. “Constraining the Higgs boson self-coupling from
single- and double-Higgs production with the ATLAS detector using
pp collisions at √s = 13 TeV”. In: ATLAS-CONF-2022-050 (2022). URL:
https://cds.cern.ch/record/2816332.
[82] ATLAS Collaboration. “Luminosity determination in pp collisions
at √s = 13 TeV using the ATLAS detector at the LHC”. In:
arXiv:2212.09379 [hep-ex] (2022). arXiv: 2212.09379 [hep-ex].
[83] GEANT4 Collaboration, S. Agostinelli, et al. “GEANT4 – a simulation
toolkit”. In: Nucl. Instrum. Meth. A 506 (2003), p. 250. DOI: 10.1016/
S0168-9002(03)01368-8.
[84] T. Sjöstrand, S. Mrenna, and P. Skands. “A brief introduction to PYTHIA
8.1”. In: Comput. Phys. Commun. 178 (2008), pp. 852–867. DOI: 10 .
1016/j.cpc.2008.01.036. arXiv: 0710.3820 [hep-ph].
[85] ATLAS Collaboration. The Pythia-8 A3 tune description of ATLAS minimum bias and inelastic ATL-PHYS-PUB-2016-017. 2016. URL: https : / / cds . cern . ch /
record/2206965.
[86] Richard D. Ball et al. “Parton distributions with LHC data”. In:
Nucl. Phys. B 867 (2013), p. 244. DOI: 10.1016/j.nuclphysb.2012.
10.003. arXiv: 1207.1303 [hep-ph].
[87] D. J. Lange. “The EvtGen particle decay simulation package”. In:
Nucl. Instrum. Meth. A 462 (2001), p. 152. DOI: 10 . 1016 / S0168 -
9002(01)00089-4.
[88] Enrico Bothmann et al. “Event generation with Sherpa 2.2”. In:
SciPost Phys. 7.3 (2019), p. 034. DOI: 10.21468/SciPostPhys.7.3.
034. arXiv: 1905.09127 [hep-ph].
[89] ATLAS Collaboration. “The ATLAS Simulation Infrastructure”. In:
The European Physical Journal C 70 (2010). DOI: 10 . 1140 / epjc /
s10052 - 010 - 1429 - 9. arXiv: 1005 . 4568 [physics.ins-det].
URL: https://link.springer.com/article/10.1140/epjc/
s10052-010-1429-9.
[90] Simone Alioli et al. “A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX”.
In: Journal of High Energy Physics 06 (2010), p. 043. DOI: 10 . 1007 /
JHEP06(2010)043. arXiv: 1002.2581 [hep-ph]. URL: https://
link.springer.com/article/10.1007/JHEP06(2010)043.
[91] J. Alwall et al. “The automated computation of tree-level and nextto-
leading order differential cross sections, and their matching to parton
shower simulations”. In: Journal of High Energy Physics 07 (2014),
p. 079. DOI: 10 . 1007 / JHEP07(2014 ) 079. arXiv: 1405 . 0301
[hep-ph].
[92] Richard D. Ball et al. “Parton distributions for the LHC run II”. In: 04
(2015), p. 040. DOI: 10.1007/JHEP04(2015)040. arXiv: 1410.8849
[hep-ph].
[93] P. Nason. “A New method for combining NLO QCD with shower Monte
Carlo algorithms”. In: JHEP 11 (2004), p. 040. DOI: 10.1088/1126-
6708/2004/11/040. arXiv: hep-ph/0409146 [hep-ph].
[94] S. Frixione, P. Nason and C. Oleari. “Matching NLO QCD computations
with parton shower simulations: the POWHEG method”. In: JHEP 11
(2007), p. 070. DOI: 10.1088/1126-6708/2007/11/070. arXiv: 0709.
2092 [hep-ph].
[95] Simone Alioli et al. “A general framework for implementing NLO calculations
in shower Monte Carlo programs: the POWHEG BOX”. In: JHEP
06 (2010), p. 043. DOI: 10.1007/JHEP06(2010)043. arXiv: 1002.2581
[hep-ph].
[96] NNPDF Collaboration. “Parton distributions for the LHC Run II”. In:
(2014). arXiv: 1410.8849 [hep-ph].
[97] Torbjorn Sjostrand et al. “An Introduction to PYTHIA 8.2”. In:
Comput. Phys. Commun. 191 (2015), pp. 159–177. arXiv: 1410 . 3012
[hep-ph].
[98] ATLAS Collaboration. ATLAS Pythia 8 tunes to 7 TeV data. ATL-PHYSPUB-
2014-021. 2014. URL: https://cds.cern.ch/record/1966419.
[99] ATLAS Collaboration. Summary of ATLAS Pythia 8 tunes. ATL-PHYSPUB-
2012-003. 2012. URL: https://cds.cern.ch/record/1474107.
[100] Richard D. Ball et al. “Parton distributions with LHC data”. In:
Nuclear Physics B 867.2 (2013), pp. 244 –289. ISSN: 0550-3213. DOI:
https : / / doi . org / 10 . 1016 / j . nuclphysb . 2012 . 10 . 003.
URL: http://www.sciencedirect.com/science/article/pii/
S0550321312005500.
[101] D. J. Lange. “The EvtGen particle decay simulation package”. In:
Nucl. Instrum. Meth. A 462 (2001), p. 152. DOI: 10 . 1016 / S0168 -
9002(01)00089-4.
[102] Pierre Artoisenet et al. “Automatic spin-entangled decays of heavy resonances
in Monte Carlo simulations”. In: JHEP 03 (2013), p. 015. DOI:
10.1007/JHEP03(2013)015. arXiv: 1212.3460 [hep-ph].
[103] Tanju Gleisberg and Stefan Höche. “Comix, a new matrix element generator”.
In: JHEP 12 (2008), p. 039. DOI: 10.1088/1126-6708/2008/12/
039. arXiv: 0808.3674 [hep-ph].
[104] Federico Buccioni et al. “OpenLoops 2”. In: Eur. Phys. J. C 79.10 (2019),
p. 866. DOI: 10.1140/epjc/s10052- 019- 7306- 2. arXiv: 1907.
13071 [hep-ph].
[105] Fabio Cascioli, Philipp Maierhöfer, and Stefano Pozzorini. “Scattering
Amplitudes with Open Loops”. In: Phys. Rev. Lett. 108 (2012), p. 111601.
DOI: 10 . 1103 / PhysRevLett . 108 . 111601. arXiv: 1111 . 5206
[hep-ph].
[106] Ansgar Denner, Stefan Dittmaier, and Lars Hofer. “COLLIER: A fortranbased
complex one-loop library in extended regularizations”. In:
Comput. Phys. Commun. 212 (2017), pp. 220–238. DOI: 10 . 1016 / j .
cpc.2016.10.013. arXiv: 1604.06792 [hep-ph].
[107] Stefan Höche et al. “A critical appraisal of NLO+PS matching methods”.
In: JHEP 09 (2012), p. 049. DOI: 10.1007/JHEP09(2012)049. arXiv:
1111.1220 [hep-ph].
[108] Stefan Höche et al. “QCD matrix elements + parton showers. The NLO
case”. In: JHEP 04 (2013), p. 027. DOI: 10.1007/JHEP04(2013)027.
arXiv: 1207.5030 [hep-ph].
[109] S. Catani et al. “QCD Matrix Elements + Parton Showers”. In: JHEP 11
(2001), p. 063. DOI: 10.1088/1126-6708/2001/11/063. arXiv: hepph/
0109231.
[110] Stefan Höche et al. “QCD matrix elements and truncated showers”. In:
JHEP 05 (2009), p. 053. DOI: 10.1088/1126- 6708/2009/05/053.
arXiv: 0903.1219 [hep-ph].
[111] ATLAS Collaboration. “Modelling and computational improvements to
the simulation of single vector-boson plus jet processes for the ATLAS
experiment”. In: JHEP 08 (2021), p. 089. DOI: 10.1007/JHEP08(2022)
089. arXiv: 2112.09588 [hep-ex].
[112] ATLAS Collaboration. “Measurement of the Z/γ∗ boson transverse momentum
distribution in pp collisions at √s = 7 TeV with the ATLAS detector”.
In: JHEP 09 (2014), p. 145. DOI: 10.1007/JHEP09(2014)145.
arXiv: 1406.3660 [hep-ex].
[113] J. Pumplin et al. “New generation of parton distributions with uncertainties
from global QCD analysis”. In: JHEP 07 (2002), p. 012. DOI:
10.1088/1126- 6708/2002/07/012. arXiv: hep- ph/0201195
[hep-ph].
[114] Morad Aaboud et al. “Jet reconstruction and performance using particle
flow with the ATLAS Detector”. In: Eur. Phys. J. C77.7 (2017), p. 466.
DOI: 10.1140/epjc/s10052- 017- 5031- 2. arXiv: 1703.10485
[hep-ex].
[115] ATLAS Collaboration. “ATLAS Overlap Removal Tool: AssociationUtils”.
In: (). URL: https : / / gitlab . cern . ch / atlas /
athena / tree / 21 . 2 / PhysicsAnalysis / AnalysisCommon /
AssociationUtils/.
[116] ATLAS Collaboration. “Recommended Overlap Removal Working
Points”. In: (). URL: https://indico.cern.ch/event/631313/
contributions / 2683959 / attachments / 1518878 / 2373377 /
Farrell_ORTools_ftaghbb.pdf.
[117] ATLAS Collaboration. “Search for Resonant and Nonresonant Higgs Boson
Pair Production in the bbτ+τ− Decay Channel in pp Collisions at
√s = 13 TeV with the ATLAS Detector”. In: Phys. Rev. Lett. 121 (19 2018),
p. 191801. DOI: 10.1103/PhysRevLett.121.191801. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.121.191801.
[118] A. Hoecker et al. “TMVA - Toolkit for Multivariate Data Analysis”. In:
arXiv:physics/0703039 (). URL: https://arxiv.org/abs/physics/
0703039v5.
[119] Catherine Bernaciak et al. “Fox-Wolfram moments in Higgs physics,” in:
Physical Review D 87.7 (2013). DOI: 10.1103/physrevd.87.073014.
URL: https://doi.org/10.1103\%2Fphysrevd.87.073014.
[120] Jeong Han Kim et al. “Probing the Triple Higgs Self-Interaction at the
Large Hadron Collider”. In: Phys. Rev. Lett. 122.9 (2019), p. 091801.
DOI: 10 . 1103 / PhysRevLett . 122 . 091801. arXiv: 1807 . 11498
[hep-ph].
[121] G. Aad et al. “Luminosity determination in pp collisions at √s = 13 TeV
using the ATLAS detector at the LHC”. In: Eur. Phys. J. C 83.10 (2023),
p. 982. DOI: 10.1140/epjc/s10052-023-11747-w. arXiv: 2212.
09379 [hep-ex]. URL: https://link.springer.com/article/
10.1140/epjc/s10052-023-11747-w.
[122] “Jet energy resolution in proton-proton collisions √s = 7 TeV recorded in
2010 with theATLAS detector”. In: Eur. Phys. J. C 73 (2013). URL: https:
//cds.cern.ch/record/1489592.
[123] ATLAS Collaboration. “Performance of b-jet identification in the ATLAS
experiment”. In: JINST 11.04 (2016), P04008. URL: http://stacks.
iop.org/1748-0221/11/i=04/a=P04008.
[124] Georges Aad et al. “Measurements of WH and ZH production in the
H → b¯b decay channel in pp collisions at 13 TeV with the ATLAS detector”.
In: Eur. Phys. J. C 81.2 (2021), p. 178. DOI: 10 . 1140 / epjc /
s10052-020-08677-2. arXiv: 2007.02873 [hep-ex]. URL: https://link.springer.com/article/10.1140/epjc/s10052-020-
08677-2.
[125] R. Frederix and S. Frixione. “Merging meets matching in MC@NLO”.
In: JHEP 12 (2012) 061 (). URL: https : / / link . springer . com /
article/10.1007/JHEP12(2012)061.
[126] ATLAS Collaboration. “Object-based missing transverse momentum significance
in the ATLAS detector”. In: ATLAS-CONF-2018-038 (2018).
URL: https://inspirehep.net/literature/1682356.
[127] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests
of new physics”. In: Eur. Phys. J. C 10.1140/epjc/s10052-011-1554-0 71
(2011). [Erratum: Eur.Phys.J.C 73, 2501 (2013)], p. 1554. DOI: 10 .
1140 / epjc / s10052 - 011 - 1554 - 0. arXiv: 1007 . 1727
[physics.data-an].
[128] A. L. Read. “Presentation of search results: the CLs technique”.
In: J. Phys. G: Nucl. Part. Phys. 28, 2693 (2002) (). URL: https : / /
iopscience.iop.org/article/10.1088/0954-3899/28/10/
313.
[129] "ATLAS Collaboration". “Constraints on the Higgs boson self-coupling
from single- and double-Higgs production with the ATLAS detector using
pp collisions at s=13 TeV”. In: Physics Letters B 843 (2023), p. 137745.
ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb.
2023 . 137745. URL: https : / / www . sciencedirect . com /
science/article/pii/S0370269323000795.
[130] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph Neural
Networks in Particle Physics”. In: (). Related DOI: https://doi.
org/10.1088/2632-2153/abbf9a. DOI: 10.48550/arXiv.2007.
13681. arXiv: 2007.13681 [hep-ex]. URL: https://doi.org/10.
48550/arXiv.2007.13681.
[131] “Projected sensitivity of Higgs boson pair production in the bbτ τ final
state using proton-proton collisions at HL-LHC with the ATLAS detector”.
In: (2021). URL: https://cds.cern.ch/record/2798448/
files/ATL-PHYS-PUB-2021-044.pdf. URL: https://cds.cern.
ch/record/2798448/files/ATL-PHYS-PUB-2021-044.pdf.
[132] “Simulated HL-LHC collision event in the ATLAS detector. General
Photo:” in: (2019). URL: https://cds.cern.ch/record/2674770.
URL: https://cds.cern.ch/record/2674770.
[133] “Technical Design Report for the ATLAS Inner Tracker Pixel Detector”.
In: (2017). URL: https://cds.cern.ch/record/2285585. DOI:
{10.17181/CERN.FOZZ.ZP3Q}. URL: https://cds.cern.ch/
record/2285585.
[134] “ATLAS Liquid Argon Calorimeter Phase-II Upgrade : Technical Design
Report”. In: (). URL: https://cds.cern.ch/record/2285582.
DOI: 10.17181/CERN.6QIO.YGHO. URL: https://cds.cern.ch/
record/2285582.
[135] “Technical Design Report for the Phase-II Upgrade of the ATLAS Tile
Calorimeter”. In: (). URL: https://cds.cern.ch/record/2285583.
URL: https://cds.cern.ch/record/2285583.
[136] “A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade:
Technical Design Report”. In: (). URL: https : / / cds . cern . ch /
record/2719855. URL: https://cds.cern.ch/record/2719855.
[137] “Technical Design Report for the Phase-II Upgrade of the ATLAS Muon
Spectrometer”. In: (). URL: https : / / cds . cern . ch / record /
2285580. URL: https://cds.cern.ch/record/2285580.
[138] “Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ
System”. In: (). URL: https://cds.cern.ch/record/2285584.
DOI: 10.17181/CERN.2LBB.4IAL. URL: https://cds.cern.ch/
record/2285584.
[139] “Technical Proposal: A High-Granularity Timing Detector for the ATLAS
Phase-II Upgrade”. In: ().
[140] G. Pellegrini et al. “Technology developments and first measurements of
Low Gain Avalanche Detectors (LGAD) for high energy physics applications”.
In: Nuclear Instruments 765 (2014). HSTD-9 2013 - Proceedings
of the 9th International "Hiroshima" Symposium on Development and
Application of Semiconductor Tracking Detectors, pp. 12–16. ISSN: 0168-
9002. DOI: https://doi.org/10.1016/j.nima.2014.06.008.
URL: https://www.sciencedirect.com/science/article/
pii/S0168900214007128.
[141] Christophe De La Taille et al. ““ALTIROC0, a 20 pico-second time resolution
ASIC for the ATLAS High Granularity Timing Detector (HGTD)””.
In: PoS https://pos.sissa.it/313/006 TWEPP-17 (2018), p. 006. DOI: 10.
22323/1.313.0006.
[142] “CERN SPS North Area”. In: (). Accessed on October 25, 2023. URL:
http : / / sba . web . cern . ch / sba / BeamsAndAreas / H6 / H6 _
presentation.html.
[143] Diener, R. and others. “The DESY II Test Beam Facility”. In: 922 (2019).
URL: https://arxiv.org/abs/1807.09328, p. 265.
[144] M. Carulla et al. “First 50 μm thick LGAD fabrication at CNM”. In:
(2016). URL: https://agenda.infn.it/getFile.py/access?
contribId=20&sessionId=8&resId=0&materialId=slides&
confId=11109. URL: https://agenda.infn.it/getFile.py/
access?contribId=20&sessionId=8&resId=0&materialId=
slides&confId=11109.
[145] RD50. “—Radiation hard semiconductor devices for very high luminosity
colliders”. In: (). Accessed: October 25, 2023. URL: http://rd50.
web.cern.ch/rd50/.
[146] S. Hidalgo et al. “CNM activities on LGADs for ATLAS/CMS Timing
Layers, talk given at the 32nd RD50 Workshop, Hamburg, Germany”.
In: (2018). URL: https : / / indico . cern . ch / event / 719814 /
contributions / 3022492/. URL: https : / / indico . cern . ch /
event/719814/contributions/3022492/.
[147] RD50. “Radiation hard semiconductor devices for very high luminosity
colliders”. In: https://rd50.web.cern.ch ().
[148] G. Kramberger and all. “Radiation hardness of thin Low Gain Avalanche
Detectors”. In: Nuclear Instruments 891 (2018), pp. 68–77. ISSN: 0168-
9002. DOI: https://doi.org/10.1016/j.nima.2018.02.018.
URL: https://www.sciencedirect.com/science/article/
pii/S0168900218301682.
[149] C. Allaire et al. “Beam test measurements of Low Gain Avalanche Detector
single pads and arrays for the ATLAS High Granularity Timing
Detector”. In: (). DOI: 10.1088/1748-0221/13/06/P06017. arXiv:
1804.00622 [physics.ins-det].
[150] L. Castillo Garcia. “A High-Granularity Timing Detector for the Phase-II
upgrade of theATLAS Calorimeter system: detector concept, description,
R&D and beam test results”. In: JINST (). URL: https://iopscience.
iop.org/article/10.1088/1748-0221/15/09/C09047.
[151] H. Jansen et al. “Performance of the EUDET-type beam telescopes”.
In: EPJ Tech. Instrum. 3 (2016) 7 (). URL: https : / /
epjtechniquesandinstrumentation . springeropen . com /
articles/10.1140/epjti/s40485-016-0033-2. URL: https:
/ / epjtechniquesandinstrumentation . springeropen . com /
articles/10.1140/epjti/s40485-016-0033-2.
[152] V. Gkougkousis O.V. Posopkina and L. Castillo Garcia. “Design and integration
of a SiPM based Timing Reference for ATLAS HGTD test beam”.
In: (). URL: https://cds.cern.ch/record/2635107. URL: https:
//cds.cern.ch/record/2635107.
[153] I. Rubinskiy, EUTelescope. Offline track reconstruction and DUT analysis
software, Tech. Rep., EUDET-Memo-2010-12, EUDET (2010), in: (). URL:
https://www.eudet.org/e26/e28/e86887/e107460/EUDETMemo-
2010-12.pdf. URL: https://www.eudet.org/e26/e28/
e86887/e107460/EUDET-Memo-2010-12.pdf.
[154] L. Castillo García et al. “Characterization of Irradiated Boron, Carbon-
Enriched and Gallium Si-on-Si Wafer Low Gain Avalanche Detectors”.
In: Instruments 6 (2022). Instruments 6 (2022) 2., p. 2.
[155] S. Ali et al. “Performance in beam tests of carbon-enriched irradiated
Low Gain Avalanche Detectors for the ATLAS High Granularity Timing
Detector”. In: Journal of Instrumentation 18 (2023). URL: https :
//iopscience.iop.org/article/10.1088/1748-0221/18/
05/P05005, P05005. DOI: 10.1088/1748- 0221/18/05/P05005.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/18/05/P05005.
[156] Dale Abbott et al. Supporting Document: The Search for Non-Resonant ggF and VBF Tech. rep. Geneva: CERN, 2021. URL: https : / / cds . cern . ch /
record/2780536.
[157] “Measuring masses of semi-invisibly decaying particle pairs produced
at hadron colliders”. In: Physics Letters B (). URL: https :
/ / inspirehep . net / literature / 501707. URL: https : / /
inspirehep.net/literature/501707.
指導教授 李世昌(Shih-Chang Lee) 審核日期 2024-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明