參考文獻 |
[1] “Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC”. In: (). https : / / www . sciencedirect .
com/science/article/pii/S0370269312008581. DOI: https:
/ / doi . org / 10 . 1016 / j . physletb . 2012 . 08 . 021. URL:https://www.sciencedirect.com/science/article/pii/
S0370269312008581.
[2] “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC”. In: (). https :
/ / www . sciencedirect . com / science / article / pii /
S037026931200857X. DOI: https : / / doi . org / 10 . 1016 / j .
physletb.2012.08.020. URL: https://www.sciencedirect.
com/science/article/pii/S037026931200857X.
[3] F. Englert and R. Brout. “Broken Symmetry and the Mass of Gauge Vector
Mesons”. In: Phys. Rev. Lett. 13 (9 1964). https://link.aps.org/
doi/10.1103/PhysRevLett.13.321, pp. 321–323. DOI: 10.1103/
PhysRevLett.13.321. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.13.321.
[4] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”.
In: Phys. Rev. Lett. 13 (16 1964). https : / / link . aps . org / doi /
10 . 1103 / PhysRevLett . 13 . 508, pp. 508–509. DOI: 10 . 1103 /
PhysRevLett.13.508. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.13.508.
[5] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless
Bosons”. In: Phys. Rev. 145 (4 1966), pp. 1156–1163. DOI: 10 . 1103 /
PhysRev.145.1156. URL: https://link.aps.org/doi/10.
1103/PhysRev.145.1156.
[6] G.C. Branco, P.M. Ferreira, and L. Lavoura .. “Theory and phenomenology
of two-Higgs-doublet models”. In: Physics Reports 516.1 (2012).
https : / / www . sciencedirect . com / science / article /
pii/S0370157312000695, pp. 1–102. ISSN: 0370-1573. DOI: https:
/ / doi . org / 10 . 1016 / j . physrep . 2012 . 02 . 002. URL:
https://www.sciencedirect.com/science/article/pii/
S0370157312000695.
[7] Lisa Randall and Raman Sundrum. “Large Mass Hierarchy from a Small
Extra Dimension”. In: Phys. Rev. Lett. 83 (17 1999). https://link.
aps.org/doi/10.1103/PhysRevLett.83.3370, pp. 3370–3373.
DOI: 10.1103/PhysRevLett.83.3370. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.83.3370.
[8] “Technical Design Report for the ATLAS Inner Tracker Strip Detector”.
In: (Apr. 2017). URL: https://cds.cern.ch/record/2257755.
URL: https://cds.cern.ch/record/2257755.
[9] O Brüning and L Rossi. “The High Luminosity Large Hadron Collider:
The New Machine for Illuminating the Mysteries of Universe”.
In: World Scientific Publishing Company Pte Limited. Advanced Series
on Directions in High Energy Physics (2015). URL: https://books.
google.com/books?id=8pJEDwAAQBAJ.
[10] C. Agapopoulou et al. “Performance in beam tests of irradiated Low Gain
Avalanche Detectors for the ATLAS High Granularity Timing Detector”.
In: JINST (). URL: https://iopscience.iop.org/article/10.
1088/1748-0221/17/09/P09026. DOI: 10.1088/1748-0221/17/
09/P09026.
[11] ATLAS Collaboration. “Search for resonant and non-resonant Higgs boson
pair production in the b¯bτ+τ−decay channel using 13 TeV pp collision
data from the ATLAS detector”. In: JHEP (). URL: https : / /
link . springer . com / article / 10 . 1007 / JHEP07(2023 ) 040.
URL: https : / / link . springer . com / article / 10 . 1007 /
JHEP07(2023)040.
[12] “Review of Particle Physics”. In: PhysRevD.98.030001 (). URL: https:
//link.aps.org/doi/10.1103. URL: https://link.aps.org/
doi/10.1103.
[13] Jeffrey Goldstone, Abdus Salam, and StevenWeinberg. “Broken Symmetries”.
In: Physical Review 127 (3 1962), pp. 965–970. DOI: 10 . 1103 /
PhysRev.127.965. URL: https://link.aps.org/doi/10.1103/
PhysRev.127.965.
[14] W. Bentz et al. “Reassessment of the NuTeV determination of the weak
mixing angle”. In: https://doi.org/10.1016/j.physletb.2010.09.001 693
(2010), pp. 462–466. DOI: 10.1016/j.physletb.2010.09.001. arXiv:
0908.3198 [nucl-th].
[15] D de Florian et al. “Handbook of LHC Higgs Cross Sections: 4. Deciphering
the Nature of the Higgs Sector”. In: (2016). arXiv: 1610.07922
[hep-ph].
[16] Public plots. “LHC Higgs Cross Section Working Group”. In: (). URL:
https : / / twiki . cern . ch / twiki / bin / view / LHCPhysics /
HiggsXSBR. URL: https://twiki.cern.ch/twiki/bin/view/
LHCPhysics/HiggsXSBR.
[17] CERN. “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature
of the Higgs Sector”. In: CERN Yellow Reports: Monographs (). URL:
https://e-publishing.cern.ch/index.php/CYRM/issue/
view/32.
[18] LHC Higgs Cross Section Working Group. “LHC Higgs Cross Section
Working Group”. In: LHC Physics Analysis Summary (). URL: https:
//twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH.
[19] J. Baglio et al. “gg → HH: Combined Uncertainties”. In: Physics Letters B
(Aug. 2020), 056002 (2020). URL: https://cds.cern.ch/record/
2729029.
[20] G. W. Bennett et al. (Muon g 2 Collaboration).
E821 muon anomalous magnetic moment. 2006. URL: https : / /
journals.aps.org/prd/abstract/10.1103/PhysRevD.73.
072003.
[21] BaBar Collaboration. “Evidence for an excess of ¯B →D(∗)τ− ¯ ντ Decays.
arXiv:1205.5442v2 [hep-ex]”. In: Physical Review Letters 108 (2012),
p. 211801. DOI: 10.1103/PhysRevLett.108.211801. URL: https:
//arxiv.org/abs/1205.5442v2.
[22] BaBar Collaboration. “Measurement of an excess of ¯B →D(∗)τ− ¯ ντ decays
and implications for charged Higgs bosons. Phys. Rev. D 88, 072012”. In:
Physical Review D 88 (2013), p. 072012. DOI: 10.1103/PhysRevD.88.
072012. URL: https://journals.aps.org/prd/abstract/10.
1103/PhysRevD.88.072012.
[23] Belle Collaboration. “Measurement of the branching ratio of ¯B →D(∗)τ− ¯ ντ
relative to ¯B →D(∗)l− ¯ νl decays with hadronic tagging at Belle Phys. Rev.
D 92, 072014”. In: Physical Review D 92 (2014), p. 072014. DOI: 10.1103/
PhysRevD.92.072014. URL: https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.92.072014.
[24] Belle Collaboration. “Measurement of the branching ratio of
B¯0→D(∗+)τ−ν¯τ relative to B¯0→D(∗+)l− ¯ νl decays with a semileptonic
tagging method. Phys. Rev. D 94, 072007”. In: Physical Review D 94
(2016), p. 072007. DOI: 10 . 1103 / PhysRevD . 94 . 072007. URL:
https : / / journals . aps . org / prd / abstract / 10 . 1103 /
PhysRevD.94.072007.
[25] LHCb Collaboration. “Measurement of the Ratio of Branching Fractions
B(B
0
→ D∗+τ−ντ )/B(B
0
→ D∗+μ−νμ)”. In: Phys. Rev. Lett. 115 (2015),
p. 111803. DOI: 10.1103/PhysRevLett.115.111803. URL: https:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.
115.111803.
[26] LHCb Collaboration. “Measurement of CP-Averaged Observables in the
B0→K0∗μ+μ− Decay”. In: Phys. Rev. Lett. 125 (2020), p. 011802. DOI: 10.
1103/PhysRevLett.125.011802. URL: https://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.125.011802.
[27] C. Bambi and A. D. Dolgov. “Introduction to Particle Cosmology - The
Standard Model of Cosmology and its Open Problems”. In: (2016). ISBN
978-3-662-48078-6.
[28] ATLAS Collaboration. “ATLAS detector and physics performance: Technical
Design Report, 1”. In: CERN Report (1999). URL: https://cds.
cern.ch/record/391176.
[29] ATLAS Collaboration. “ATLAS detector and physics performance: Technical
Design Report, 2”. In: CERN Report (1999). URL: https://cds.
cern.ch/record/391177.
[30] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large
Hadron Collider”. In: JINST 3 (2008), S08003. DOI: 10 . 1088 / 1748 -
0221 / 3 / 08 / S08003. URL: https : / / iopscience . iop . org /
article/10.1088/1748-0221/3/08/S08003.
[31] Lyndon Evans and Philip Bryant. “LHC Machine”. In: JINST 3 (2008),
S08001. DOI: 10.1088/1748- 0221/3/08/S08001. URL: https:
//iopscience.iop.org/article/10.1088/1748-0221/3/08/
S08001.
[32] The CMS Collaboration. “The CMS experiment at the CERN LHC”. In:
JINST 3 (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08004.
[33] The ALICE Collaboration. “The ALICE experiment at the CERN LHC”.
In: JINST 3 (2008), S08002. DOI: 10.1088/1748-0221/3/08/S08002.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08002.
[34] The LHCb Collaboration. “The LHCb experiment at the CERN LHC”. In:
JINST 3 (2008), S08005. DOI: 10.1088/1748-0221/3/08/S08005.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08005.
[35] The TOTEM Collaboration. “The TOTEM experiment at the CERN
LHC”. In: JINST 3 (2008), S08007. DOI: 10 . 1088 / 1748 - 0221 / 3 /
08/S08007. URL: https://iopscience.iop.org/article/10.
1088/1748-0221/3/08/S08007.
[36] MoEDAL Collaboration. “Technical Design Report of the MoEDAL Experiment”.
In: CERN Report (). DOI: https : / / cds . cern . ch /
record/1181486. URL: https://cds.cern.ch/record/1181486.
[37] The LHCf Collaboration. “The LHCf experiment at the CERN LHC”. In:
JINST 3 (2008), S08006. DOI: 10.1088/1748-0221/3/08/S08006.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/3/08/S08006.
[38] ATLAS Collaboration. “ATLAS Luminosity Results for Run-2 of the
LHC”. In: ATLAS Public Results (Available online). URL: https :
/ / twiki . cern . ch / twiki / bin / view / AtlasPublic /
LuminosityPublicResultsRun2.
[39] John C. Collins and Davison E. Soper. “Parton distribution and decay
functions”. In: Nuclear Physics B 194.3 (1982), pp. 445–492. ISSN: 0550-
3213. DOI: 10 . 1016 / 0550 - 3213(82 ) 90021 - 9. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321382900219.
[40] A. D. Martin et al. “Parton distributions for the LHC”. In:
European Physical Journal C 63.2 (2009), pp. 189–285. DOI: 10.1140/
epjc/s10052-009-1072-5. URL: https://link.springer.com/
article/10.1140/epjc/s10052-009-1072-5.
[41] G. Altarelli and G. Parisi. “Asymptotic freedom in parton language”.
In: Nuclear Physics B 126.2 (1977), pp. 298–318. ISSN: 0550-
3213. DOI: 10 . 1016 / 0550 - 3213(77 ) 90384 - 4. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321377903844.
[42] Joao Pequenao. “Computer generated image of the whole ATLAS detector”.
In: CERN Document Server (Available online). URL: https://
cds.cern.ch/record/1095924.
[43] ATLAS Collaboration. “ATLAS central solenoid: Technical Design Report”.
In: CERN Document Server (1997). URL: https://cds.cern.
ch/record/331067.
[44] ATLAS Collaboration. “ATLAS inner detector: Technical Design Report,
1”. In: CERN Document Server (1997). URL: https://cds.cern.ch/
record/331063.
[45] Joao Pequenao. “Computer generated image of the ATLAS inner detector”.
In: CERN Document Server (). URL: https://cds.cern.ch/
record/1095926.
[46] ATLAS Collaboration. “ATLAS Insertable B-Layer: Technical Design Report”.
In: CERN Document Server (2010). URL: https://cds.cern.
ch/record/331069.
[47] Joao Pequenao. “Computer Generated image of the ATLAS calorimeter”.
In: CERN Document Server (). URL: https://cds.cern.ch/record/
1095927.
[48] ATLAS Collaboration. “ATLAS muon spectrometer: Technical Design
Report, 2”. In: CERN Document Server (1997). URL: https : / / cds .
cern.ch/record/331068.
[49] ATLAS Collaboration. Performance of the ATLAS Trigger System in 2015.
2015. URL: https://cds.cern.ch/record/2235584.
[50] Joao Pequenao. “How ATLAS detects particles: diagram of particle paths
in the detector”. In: CERN Document Server (). URL: https://cds.
cern.ch/record/1505342.
[51] ATLAS Collaboration. “Performance of the ATLAS track reconstruction
algorithms in dense environments in LHC Run 2”. In:
European Physical Journal C 77.5 (2017), p. 285. URL: https://link.
springer.com/article/10.1140/epjc/s10052-017-5225-7.
[52] E. Belau, R. Klanner, and M. Riebesell. “Charge collection in silicon strip
detectors”. In: Nuclear Instruments 223.2-3 (1984), pp. 358–361. ISSN:
0167-5087. DOI: https : / / doi . org / 10 . 1016 / 0167 - 5087(84 )
90279- 5. URL: https://www.sciencedirect.com/science/
article/pii/0167508783905914.
[53] R. Frühwirth. “Application of Kalman filtering to track and vertex fitting”.
In: Nuclear Instruments 262.2 (1987), pp. 444–450. ISSN: 0168-9002.
DOI: https://doi.org/10.1016/0168-9002(87)90887-4. URL:
https://www.sciencedirect.com/science/article/pii/
0168900287908874.
[54] ATLAS Collaboration. “The new ATLAS track reconstruction (NEWT)”.
In: Journal of Physics: Conference Series, Volume 119, 032014 (2019).
URL: https://iopscience.iop.org/article/10.1088/1742-
6596/119/3/032014.
[55] ATLAS Collaboration. “Performance of primary vertex reconstruction
in proton-proton collisions at √s = 7 TeV in the ATLAS experiment”.
In: ATLAS-CONF-2010-069 (2010). URL: https : / / cds . cern . ch /record/1281344.
[56] ATLAS Collaboration. “Reconstruction of primary vertices at the ATLAS
experiment in Run 1 proton–proton collisions at the LHC”.
In: European Physical Journal C, Volume 77, Article 332 (2017). URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-017-4887-5.
[57] ATLAS Collaboration. “Electron reconstruction and identification
in the ATLAS experiment using the 2015 and 2016
LHC proton-proton collision data at √s = 13 TeV”. In:
European Physical Journal C, Volume 79, Article 639 (2019). URL:
https://arxiv.org/abs/1902.04655.
[58] ATLAS Collaboration. “Electron and photon energy calibration
with the ATLAS detector using LHC Run 1 data”. In:
European Physical Journal C, Volume 74, Article 3071 (2014). URL:
https://arxiv.org/abs/1407.5063.
[59] ATLAS Collaboration. “Electron and photon energy calibration with
the ATLAS detector using 2015-2016 LHC proton-proton collision
data”. In: European Physical Journal C, Volume 74, Article 3071 (2018).
URL: https://arxiv.org/abs/1812.03848.
[60] ATLAS Collaboration. “Muon reconstruction performance of the ATLAS
detector in proton-proton collision data at √s = 13 TeV”. In:
Eur. Phys. J. C 76 (2016), p. 292. DOI: 10.1140/epjc/s10052-016-
4120 - y. arXiv: 1603 . 05598 [hep-ex]. URL: https : / / link .
springer.com/article/10.1140/epjc/s10052-016-4120-y.
[61] ATLAS Collaboration. “Measurement of the muon reconstruction performance
of the ATLAS detector using 2011 and 2012 LHC proton-proton
collision data”. In: Eur. Phys. J. C 74 (2014), p. 3130. DOI: 10 . 1140 /
epjc / s10052 - 014 - 3130 - x. arXiv: 1407 . 3935 [hep-ex]. URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-014-3130-x.
[62] Gavin P. Salam. “Towards Jetography”. In: Eur. Phys. J. C 67 (2010),
pp. 637–686. DOI: 10 . 1140 / epjc / s10052 - 010 - 1314 - 6. arXiv:
0906.1833 [hep-ph].
[63] T. Carli, K. Rabbertz, and S. Schumann. “Studies of Quantum Chromodynamics
at the LHC”. In: Springer, Cham (2015). URL: https://link.
springer.com/chapter/10.1007/978-3-319-15001-7\_5.
[64] Georges Aad et al. “Topological cell clustering in the ATLAS calorimeters
and its performance in LHC Run 1”. In: Eur. Phys. J. C 77 (2017), p. 490.
DOI: 10.1140/epjc/s10052- 017- 5004- 5. arXiv: 1603.02934
[hep-ex].
[65] M. Cacciari, G. P. Salam, and G. Soyez. “The anti-kt jet clustering algorithm”.
In: JHEP 04 (2008), p. 063. URL: https://iopscience.iop.
org/article/10.1088/1126-6708/2008/04/063.
[66] Morad Aaboud et al. “Determination of jet calibration and energy resolution
in proton-proton collisions at √s = 8 TeV using the ATLAS detector”.
In: Eur. Phys. J. C 80.12 (2020), p. 1104. DOI: 10.1140/epjc/
s10052-020-08477-8. arXiv: 1910.04482 [hep-ex].
[67] ATLAS Collaboration. “Jet energy scale measurements and their systematic
uncertainties in proton-proton collisions at √s = 13 TeV with the
ATLAS detector”. In: Phys. Rev. D 96 (7 2017), p. 072002. DOI: 10.1103/
PhysRevD.96.072002. URL: https://journals.aps.org/prd/
abstract/10.1103/PhysRevD.96.072002.
[68] Matteo Cacciari and Gavin P. Salam. “Pileup subtraction using jet areas”.
In: Physics Letters B 659.1 (2008), pp. 119–126. ISSN: 0370-2693.
DOI: 10 . 1016 / j . physletb . 2007 . 09 . 077. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0370269307011094.
[69] ATLAS Collaboration. “Tagging and suppression of pileup jets”. In:
ATLAS-CONF-2014-018 (2014). URL: https : / / cds . cern . ch /
record/1700870.
[70] ATLAS Collaboration. “ATLAS b-jet identification performance and efficiency
measurement with t¯t events in pp collisions at √s = 13 TeV”.
In: Eur. Phys. J. C 79 (2019), p. 970. DOI: 10 . 1140 / epjc / s10052 -
019-7450-8. arXiv: 1907.05120 [hep-ex]. URL: https://link.
springer.com/article/10.1140/epjc/s10052-019-7450-8.
[71] ATLAS Collaboration. “Optimization and performance studies of
the ATLAS b-tagging algorithms for the 2017-18 LHC run”. In:
ATL-PHYS-PUB-2017-013 (2017). URL: https : / / cds . cern . ch /
record/2273281.
[72] ATLAS Collaboration. “Identification of Jets Containing b-Hadrons with
Recurrent Neural Networks at the ATLAS Experiment”. In: (2017). URL:
https://cds.cern.ch/record/2255226.
[73] ATLAS Collaboration. “Evidence for the H → b¯b decay with the ATLAS
detector”. In: JHEP 12 (2017), p. 024. DOI: 10.1007/JHEP12(2017)
024. URL: https://link.springer.com/article/10.1007/
JHEP12(2017)024.
[74] Morad Aaboud et al. “Performance of missing transverse momentum reconstruction
with the ATLAS detector using proton-proton collisions at
√s = 13 TeV”. In: Eur. Phys. J. C 78.11 (2018), p. 903. DOI: 10.1140/
epjc/s10052- 018- 6288- 9. arXiv: 1802.08168 [hep-ex]. URL:
https : / / link . springer . com / article / 10 . 1140 / epjc /
s10052-018-6288-9.
[75] ATLAS Collaboration. “Reconstruction, Energy Calibration, and Identification
of Hadronically Decaying Tau Leptons in the ATLAS Experiment
for Run-2 of the LHC”. In: ATL-PHYS-PUB-2015-045 (2015). URL:
https://cds.cern.ch/record/2064383.
[76] ATLAS Collaboration. “Identification of hadronic tau lepton decays
using neural networks in the ATLAS experiment”. In:
ATL-PHYS-PUB-2019-033 (2019). URL: https : / / cds . cern . ch /
record/2688062.
[77] A. Elagin et al. “A new mass reconstruction
technique for resonances decaying to τ τ ”. In:
Nuclear Instruments and Methods in Physics Research Section A 654.1
(2011), pp. 481–489. ISSN: 0168-9002. DOI: 10.1016/j.nima.2011.
07.009. URL: https://doi.org/10.1016/j.nima.2011.07.009.
[78] ATLAS Collaboration. “Search for non-resonant Higgs boson pair
production in the 2b + 2ℓ + Emiss
T final state in pp collisions at
√s = 13TeV with the ATLAS detector, ATLAS-CONF-2023-064”. In:
ATLAS-CONF-2023-064 (). URL: https://cds.cern.ch/record/
2873518.
[79] ATLAS Collaboration. “Search for resonant and non-resonant Higgs boson
pair production in the b¯bτ+τ− decay channel using 13 TeV pp collision
data from the ATLAS detector”. In: arXiv:2209.10910 [hep-ex] (2022).
arXiv: 2209.10910 [hep-ex]. URL: https://arxiv.org/abs/
2209.10910.
[80] ATLAS Collaboration. “Combination of searches for non-resonant and
resonant Higgs boson pair production in the b¯bγγ, b¯bτ+τ−, and b¯bb¯b decay
channels using pp collisions at √s = 13 TeV with the ATLAS detector”.
In: ATLAS-CONF-2021-052 (2021). URL: https://cds.cern.ch/
record/2786865.
[81] ATLAS Collaboration. “Constraining the Higgs boson self-coupling from
single- and double-Higgs production with the ATLAS detector using
pp collisions at √s = 13 TeV”. In: ATLAS-CONF-2022-050 (2022). URL:
https://cds.cern.ch/record/2816332.
[82] ATLAS Collaboration. “Luminosity determination in pp collisions
at √s = 13 TeV using the ATLAS detector at the LHC”. In:
arXiv:2212.09379 [hep-ex] (2022). arXiv: 2212.09379 [hep-ex].
[83] GEANT4 Collaboration, S. Agostinelli, et al. “GEANT4 – a simulation
toolkit”. In: Nucl. Instrum. Meth. A 506 (2003), p. 250. DOI: 10.1016/
S0168-9002(03)01368-8.
[84] T. Sjöstrand, S. Mrenna, and P. Skands. “A brief introduction to PYTHIA
8.1”. In: Comput. Phys. Commun. 178 (2008), pp. 852–867. DOI: 10 .
1016/j.cpc.2008.01.036. arXiv: 0710.3820 [hep-ph].
[85] ATLAS Collaboration. The Pythia-8 A3 tune description of ATLAS minimum bias and inelastic ATL-PHYS-PUB-2016-017. 2016. URL: https : / / cds . cern . ch /
record/2206965.
[86] Richard D. Ball et al. “Parton distributions with LHC data”. In:
Nucl. Phys. B 867 (2013), p. 244. DOI: 10.1016/j.nuclphysb.2012.
10.003. arXiv: 1207.1303 [hep-ph].
[87] D. J. Lange. “The EvtGen particle decay simulation package”. In:
Nucl. Instrum. Meth. A 462 (2001), p. 152. DOI: 10 . 1016 / S0168 -
9002(01)00089-4.
[88] Enrico Bothmann et al. “Event generation with Sherpa 2.2”. In:
SciPost Phys. 7.3 (2019), p. 034. DOI: 10.21468/SciPostPhys.7.3.
034. arXiv: 1905.09127 [hep-ph].
[89] ATLAS Collaboration. “The ATLAS Simulation Infrastructure”. In:
The European Physical Journal C 70 (2010). DOI: 10 . 1140 / epjc /
s10052 - 010 - 1429 - 9. arXiv: 1005 . 4568 [physics.ins-det].
URL: https://link.springer.com/article/10.1140/epjc/
s10052-010-1429-9.
[90] Simone Alioli et al. “A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX”.
In: Journal of High Energy Physics 06 (2010), p. 043. DOI: 10 . 1007 /
JHEP06(2010)043. arXiv: 1002.2581 [hep-ph]. URL: https://
link.springer.com/article/10.1007/JHEP06(2010)043.
[91] J. Alwall et al. “The automated computation of tree-level and nextto-
leading order differential cross sections, and their matching to parton
shower simulations”. In: Journal of High Energy Physics 07 (2014),
p. 079. DOI: 10 . 1007 / JHEP07(2014 ) 079. arXiv: 1405 . 0301
[hep-ph].
[92] Richard D. Ball et al. “Parton distributions for the LHC run II”. In: 04
(2015), p. 040. DOI: 10.1007/JHEP04(2015)040. arXiv: 1410.8849
[hep-ph].
[93] P. Nason. “A New method for combining NLO QCD with shower Monte
Carlo algorithms”. In: JHEP 11 (2004), p. 040. DOI: 10.1088/1126-
6708/2004/11/040. arXiv: hep-ph/0409146 [hep-ph].
[94] S. Frixione, P. Nason and C. Oleari. “Matching NLO QCD computations
with parton shower simulations: the POWHEG method”. In: JHEP 11
(2007), p. 070. DOI: 10.1088/1126-6708/2007/11/070. arXiv: 0709.
2092 [hep-ph].
[95] Simone Alioli et al. “A general framework for implementing NLO calculations
in shower Monte Carlo programs: the POWHEG BOX”. In: JHEP
06 (2010), p. 043. DOI: 10.1007/JHEP06(2010)043. arXiv: 1002.2581
[hep-ph].
[96] NNPDF Collaboration. “Parton distributions for the LHC Run II”. In:
(2014). arXiv: 1410.8849 [hep-ph].
[97] Torbjorn Sjostrand et al. “An Introduction to PYTHIA 8.2”. In:
Comput. Phys. Commun. 191 (2015), pp. 159–177. arXiv: 1410 . 3012
[hep-ph].
[98] ATLAS Collaboration. ATLAS Pythia 8 tunes to 7 TeV data. ATL-PHYSPUB-
2014-021. 2014. URL: https://cds.cern.ch/record/1966419.
[99] ATLAS Collaboration. Summary of ATLAS Pythia 8 tunes. ATL-PHYSPUB-
2012-003. 2012. URL: https://cds.cern.ch/record/1474107.
[100] Richard D. Ball et al. “Parton distributions with LHC data”. In:
Nuclear Physics B 867.2 (2013), pp. 244 –289. ISSN: 0550-3213. DOI:
https : / / doi . org / 10 . 1016 / j . nuclphysb . 2012 . 10 . 003.
URL: http://www.sciencedirect.com/science/article/pii/
S0550321312005500.
[101] D. J. Lange. “The EvtGen particle decay simulation package”. In:
Nucl. Instrum. Meth. A 462 (2001), p. 152. DOI: 10 . 1016 / S0168 -
9002(01)00089-4.
[102] Pierre Artoisenet et al. “Automatic spin-entangled decays of heavy resonances
in Monte Carlo simulations”. In: JHEP 03 (2013), p. 015. DOI:
10.1007/JHEP03(2013)015. arXiv: 1212.3460 [hep-ph].
[103] Tanju Gleisberg and Stefan Höche. “Comix, a new matrix element generator”.
In: JHEP 12 (2008), p. 039. DOI: 10.1088/1126-6708/2008/12/
039. arXiv: 0808.3674 [hep-ph].
[104] Federico Buccioni et al. “OpenLoops 2”. In: Eur. Phys. J. C 79.10 (2019),
p. 866. DOI: 10.1140/epjc/s10052- 019- 7306- 2. arXiv: 1907.
13071 [hep-ph].
[105] Fabio Cascioli, Philipp Maierhöfer, and Stefano Pozzorini. “Scattering
Amplitudes with Open Loops”. In: Phys. Rev. Lett. 108 (2012), p. 111601.
DOI: 10 . 1103 / PhysRevLett . 108 . 111601. arXiv: 1111 . 5206
[hep-ph].
[106] Ansgar Denner, Stefan Dittmaier, and Lars Hofer. “COLLIER: A fortranbased
complex one-loop library in extended regularizations”. In:
Comput. Phys. Commun. 212 (2017), pp. 220–238. DOI: 10 . 1016 / j .
cpc.2016.10.013. arXiv: 1604.06792 [hep-ph].
[107] Stefan Höche et al. “A critical appraisal of NLO+PS matching methods”.
In: JHEP 09 (2012), p. 049. DOI: 10.1007/JHEP09(2012)049. arXiv:
1111.1220 [hep-ph].
[108] Stefan Höche et al. “QCD matrix elements + parton showers. The NLO
case”. In: JHEP 04 (2013), p. 027. DOI: 10.1007/JHEP04(2013)027.
arXiv: 1207.5030 [hep-ph].
[109] S. Catani et al. “QCD Matrix Elements + Parton Showers”. In: JHEP 11
(2001), p. 063. DOI: 10.1088/1126-6708/2001/11/063. arXiv: hepph/
0109231.
[110] Stefan Höche et al. “QCD matrix elements and truncated showers”. In:
JHEP 05 (2009), p. 053. DOI: 10.1088/1126- 6708/2009/05/053.
arXiv: 0903.1219 [hep-ph].
[111] ATLAS Collaboration. “Modelling and computational improvements to
the simulation of single vector-boson plus jet processes for the ATLAS
experiment”. In: JHEP 08 (2021), p. 089. DOI: 10.1007/JHEP08(2022)
089. arXiv: 2112.09588 [hep-ex].
[112] ATLAS Collaboration. “Measurement of the Z/γ∗ boson transverse momentum
distribution in pp collisions at √s = 7 TeV with the ATLAS detector”.
In: JHEP 09 (2014), p. 145. DOI: 10.1007/JHEP09(2014)145.
arXiv: 1406.3660 [hep-ex].
[113] J. Pumplin et al. “New generation of parton distributions with uncertainties
from global QCD analysis”. In: JHEP 07 (2002), p. 012. DOI:
10.1088/1126- 6708/2002/07/012. arXiv: hep- ph/0201195
[hep-ph].
[114] Morad Aaboud et al. “Jet reconstruction and performance using particle
flow with the ATLAS Detector”. In: Eur. Phys. J. C77.7 (2017), p. 466.
DOI: 10.1140/epjc/s10052- 017- 5031- 2. arXiv: 1703.10485
[hep-ex].
[115] ATLAS Collaboration. “ATLAS Overlap Removal Tool: AssociationUtils”.
In: (). URL: https : / / gitlab . cern . ch / atlas /
athena / tree / 21 . 2 / PhysicsAnalysis / AnalysisCommon /
AssociationUtils/.
[116] ATLAS Collaboration. “Recommended Overlap Removal Working
Points”. In: (). URL: https://indico.cern.ch/event/631313/
contributions / 2683959 / attachments / 1518878 / 2373377 /
Farrell_ORTools_ftaghbb.pdf.
[117] ATLAS Collaboration. “Search for Resonant and Nonresonant Higgs Boson
Pair Production in the bbτ+τ− Decay Channel in pp Collisions at
√s = 13 TeV with the ATLAS Detector”. In: Phys. Rev. Lett. 121 (19 2018),
p. 191801. DOI: 10.1103/PhysRevLett.121.191801. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.121.191801.
[118] A. Hoecker et al. “TMVA - Toolkit for Multivariate Data Analysis”. In:
arXiv:physics/0703039 (). URL: https://arxiv.org/abs/physics/
0703039v5.
[119] Catherine Bernaciak et al. “Fox-Wolfram moments in Higgs physics,” in:
Physical Review D 87.7 (2013). DOI: 10.1103/physrevd.87.073014.
URL: https://doi.org/10.1103\%2Fphysrevd.87.073014.
[120] Jeong Han Kim et al. “Probing the Triple Higgs Self-Interaction at the
Large Hadron Collider”. In: Phys. Rev. Lett. 122.9 (2019), p. 091801.
DOI: 10 . 1103 / PhysRevLett . 122 . 091801. arXiv: 1807 . 11498
[hep-ph].
[121] G. Aad et al. “Luminosity determination in pp collisions at √s = 13 TeV
using the ATLAS detector at the LHC”. In: Eur. Phys. J. C 83.10 (2023),
p. 982. DOI: 10.1140/epjc/s10052-023-11747-w. arXiv: 2212.
09379 [hep-ex]. URL: https://link.springer.com/article/
10.1140/epjc/s10052-023-11747-w.
[122] “Jet energy resolution in proton-proton collisions √s = 7 TeV recorded in
2010 with theATLAS detector”. In: Eur. Phys. J. C 73 (2013). URL: https:
//cds.cern.ch/record/1489592.
[123] ATLAS Collaboration. “Performance of b-jet identification in the ATLAS
experiment”. In: JINST 11.04 (2016), P04008. URL: http://stacks.
iop.org/1748-0221/11/i=04/a=P04008.
[124] Georges Aad et al. “Measurements of WH and ZH production in the
H → b¯b decay channel in pp collisions at 13 TeV with the ATLAS detector”.
In: Eur. Phys. J. C 81.2 (2021), p. 178. DOI: 10 . 1140 / epjc /
s10052-020-08677-2. arXiv: 2007.02873 [hep-ex]. URL: https://link.springer.com/article/10.1140/epjc/s10052-020-
08677-2.
[125] R. Frederix and S. Frixione. “Merging meets matching in MC@NLO”.
In: JHEP 12 (2012) 061 (). URL: https : / / link . springer . com /
article/10.1007/JHEP12(2012)061.
[126] ATLAS Collaboration. “Object-based missing transverse momentum significance
in the ATLAS detector”. In: ATLAS-CONF-2018-038 (2018).
URL: https://inspirehep.net/literature/1682356.
[127] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests
of new physics”. In: Eur. Phys. J. C 10.1140/epjc/s10052-011-1554-0 71
(2011). [Erratum: Eur.Phys.J.C 73, 2501 (2013)], p. 1554. DOI: 10 .
1140 / epjc / s10052 - 011 - 1554 - 0. arXiv: 1007 . 1727
[physics.data-an].
[128] A. L. Read. “Presentation of search results: the CLs technique”.
In: J. Phys. G: Nucl. Part. Phys. 28, 2693 (2002) (). URL: https : / /
iopscience.iop.org/article/10.1088/0954-3899/28/10/
313.
[129] "ATLAS Collaboration". “Constraints on the Higgs boson self-coupling
from single- and double-Higgs production with the ATLAS detector using
pp collisions at s=13 TeV”. In: Physics Letters B 843 (2023), p. 137745.
ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb.
2023 . 137745. URL: https : / / www . sciencedirect . com /
science/article/pii/S0370269323000795.
[130] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph Neural
Networks in Particle Physics”. In: (). Related DOI: https://doi.
org/10.1088/2632-2153/abbf9a. DOI: 10.48550/arXiv.2007.
13681. arXiv: 2007.13681 [hep-ex]. URL: https://doi.org/10.
48550/arXiv.2007.13681.
[131] “Projected sensitivity of Higgs boson pair production in the bbτ τ final
state using proton-proton collisions at HL-LHC with the ATLAS detector”.
In: (2021). URL: https://cds.cern.ch/record/2798448/
files/ATL-PHYS-PUB-2021-044.pdf. URL: https://cds.cern.
ch/record/2798448/files/ATL-PHYS-PUB-2021-044.pdf.
[132] “Simulated HL-LHC collision event in the ATLAS detector. General
Photo:” in: (2019). URL: https://cds.cern.ch/record/2674770.
URL: https://cds.cern.ch/record/2674770.
[133] “Technical Design Report for the ATLAS Inner Tracker Pixel Detector”.
In: (2017). URL: https://cds.cern.ch/record/2285585. DOI:
{10.17181/CERN.FOZZ.ZP3Q}. URL: https://cds.cern.ch/
record/2285585.
[134] “ATLAS Liquid Argon Calorimeter Phase-II Upgrade : Technical Design
Report”. In: (). URL: https://cds.cern.ch/record/2285582.
DOI: 10.17181/CERN.6QIO.YGHO. URL: https://cds.cern.ch/
record/2285582.
[135] “Technical Design Report for the Phase-II Upgrade of the ATLAS Tile
Calorimeter”. In: (). URL: https://cds.cern.ch/record/2285583.
URL: https://cds.cern.ch/record/2285583.
[136] “A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade:
Technical Design Report”. In: (). URL: https : / / cds . cern . ch /
record/2719855. URL: https://cds.cern.ch/record/2719855.
[137] “Technical Design Report for the Phase-II Upgrade of the ATLAS Muon
Spectrometer”. In: (). URL: https : / / cds . cern . ch / record /
2285580. URL: https://cds.cern.ch/record/2285580.
[138] “Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ
System”. In: (). URL: https://cds.cern.ch/record/2285584.
DOI: 10.17181/CERN.2LBB.4IAL. URL: https://cds.cern.ch/
record/2285584.
[139] “Technical Proposal: A High-Granularity Timing Detector for the ATLAS
Phase-II Upgrade”. In: ().
[140] G. Pellegrini et al. “Technology developments and first measurements of
Low Gain Avalanche Detectors (LGAD) for high energy physics applications”.
In: Nuclear Instruments 765 (2014). HSTD-9 2013 - Proceedings
of the 9th International "Hiroshima" Symposium on Development and
Application of Semiconductor Tracking Detectors, pp. 12–16. ISSN: 0168-
9002. DOI: https://doi.org/10.1016/j.nima.2014.06.008.
URL: https://www.sciencedirect.com/science/article/
pii/S0168900214007128.
[141] Christophe De La Taille et al. ““ALTIROC0, a 20 pico-second time resolution
ASIC for the ATLAS High Granularity Timing Detector (HGTD)””.
In: PoS https://pos.sissa.it/313/006 TWEPP-17 (2018), p. 006. DOI: 10.
22323/1.313.0006.
[142] “CERN SPS North Area”. In: (). Accessed on October 25, 2023. URL:
http : / / sba . web . cern . ch / sba / BeamsAndAreas / H6 / H6 _
presentation.html.
[143] Diener, R. and others. “The DESY II Test Beam Facility”. In: 922 (2019).
URL: https://arxiv.org/abs/1807.09328, p. 265.
[144] M. Carulla et al. “First 50 μm thick LGAD fabrication at CNM”. In:
(2016). URL: https://agenda.infn.it/getFile.py/access?
contribId=20&sessionId=8&resId=0&materialId=slides&
confId=11109. URL: https://agenda.infn.it/getFile.py/
access?contribId=20&sessionId=8&resId=0&materialId=
slides&confId=11109.
[145] RD50. “—Radiation hard semiconductor devices for very high luminosity
colliders”. In: (). Accessed: October 25, 2023. URL: http://rd50.
web.cern.ch/rd50/.
[146] S. Hidalgo et al. “CNM activities on LGADs for ATLAS/CMS Timing
Layers, talk given at the 32nd RD50 Workshop, Hamburg, Germany”.
In: (2018). URL: https : / / indico . cern . ch / event / 719814 /
contributions / 3022492/. URL: https : / / indico . cern . ch /
event/719814/contributions/3022492/.
[147] RD50. “Radiation hard semiconductor devices for very high luminosity
colliders”. In: https://rd50.web.cern.ch ().
[148] G. Kramberger and all. “Radiation hardness of thin Low Gain Avalanche
Detectors”. In: Nuclear Instruments 891 (2018), pp. 68–77. ISSN: 0168-
9002. DOI: https://doi.org/10.1016/j.nima.2018.02.018.
URL: https://www.sciencedirect.com/science/article/
pii/S0168900218301682.
[149] C. Allaire et al. “Beam test measurements of Low Gain Avalanche Detector
single pads and arrays for the ATLAS High Granularity Timing
Detector”. In: (). DOI: 10.1088/1748-0221/13/06/P06017. arXiv:
1804.00622 [physics.ins-det].
[150] L. Castillo Garcia. “A High-Granularity Timing Detector for the Phase-II
upgrade of theATLAS Calorimeter system: detector concept, description,
R&D and beam test results”. In: JINST (). URL: https://iopscience.
iop.org/article/10.1088/1748-0221/15/09/C09047.
[151] H. Jansen et al. “Performance of the EUDET-type beam telescopes”.
In: EPJ Tech. Instrum. 3 (2016) 7 (). URL: https : / /
epjtechniquesandinstrumentation . springeropen . com /
articles/10.1140/epjti/s40485-016-0033-2. URL: https:
/ / epjtechniquesandinstrumentation . springeropen . com /
articles/10.1140/epjti/s40485-016-0033-2.
[152] V. Gkougkousis O.V. Posopkina and L. Castillo Garcia. “Design and integration
of a SiPM based Timing Reference for ATLAS HGTD test beam”.
In: (). URL: https://cds.cern.ch/record/2635107. URL: https:
//cds.cern.ch/record/2635107.
[153] I. Rubinskiy, EUTelescope. Offline track reconstruction and DUT analysis
software, Tech. Rep., EUDET-Memo-2010-12, EUDET (2010), in: (). URL:
https://www.eudet.org/e26/e28/e86887/e107460/EUDETMemo-
2010-12.pdf. URL: https://www.eudet.org/e26/e28/
e86887/e107460/EUDET-Memo-2010-12.pdf.
[154] L. Castillo García et al. “Characterization of Irradiated Boron, Carbon-
Enriched and Gallium Si-on-Si Wafer Low Gain Avalanche Detectors”.
In: Instruments 6 (2022). Instruments 6 (2022) 2., p. 2.
[155] S. Ali et al. “Performance in beam tests of carbon-enriched irradiated
Low Gain Avalanche Detectors for the ATLAS High Granularity Timing
Detector”. In: Journal of Instrumentation 18 (2023). URL: https :
//iopscience.iop.org/article/10.1088/1748-0221/18/
05/P05005, P05005. DOI: 10.1088/1748- 0221/18/05/P05005.
URL: https://iopscience.iop.org/article/10.1088/1748-
0221/18/05/P05005.
[156] Dale Abbott et al. Supporting Document: The Search for Non-Resonant ggF and VBF Tech. rep. Geneva: CERN, 2021. URL: https : / / cds . cern . ch /
record/2780536.
[157] “Measuring masses of semi-invisibly decaying particle pairs produced
at hadron colliders”. In: Physics Letters B (). URL: https :
/ / inspirehep . net / literature / 501707. URL: https : / /
inspirehep.net/literature/501707. |