博碩士論文 110522064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.223.124.244
姓名 黃宥程(Yu-Cheng Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於新聞趨勢萃取之時間序列預測模型
(NTEformer: News-Trend Extractor Transformers for Time Series Forecastin)
相關論文
★ A Real-time Embedding Increasing for Session-based Recommendation with Graph Neural Networks★ 基於主診斷的訓練目標修改用於出院病摘之十代國際疾病分類任務
★ 混合式心臟疾病危險因子與其病程辨識 於電子病歷之研究★ 基於 PowerDesigner 規範需求分析產出之快速導入方法
★ 社群論壇之問題檢索★ 非監督式歷史文本事件類型識別──以《明實錄》中之衛所事件為例
★ 應用自然語言處理技術分析文學小說角色 之關係:以互動視覺化呈現★ 基於生醫文本擷取功能性層級之生物學表徵語言敘述:由主成分分析發想之K近鄰算法
★ 基於分類系統建立文章表示向量應用於跨語言線上百科連結★ Code-Mixing Language Model for Sentiment Analysis in Code-Mixing Data
★ 藉由加入多重語音辨識結果來改善對話狀態追蹤★ 對話系統應用於中文線上客服助理:以電信領域為例
★ 應用遞歸神經網路於適當的時機回答問題★ 使用多任務學習改善使用者意圖分類
★ 使用轉移學習來改進針對命名實體音譯的樞軸語言方法★ 基於歷史資訊向量與主題專精程度向量應用於尋找社群問答網站中專家
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 由於全球暖化所帶來的問題,許多國家已開始實施碳排放限制,這導致碳交易市場的出現,並對精確的碳價預測需求日益增加。在時間序列預測領域中,存在著多種方法來提高預測準確性。由於多種影響因素,預測碳價具有一定的困難性。這些因素包括政治和經濟條件、技術進步、演變中的氣候政策、波動的化石燃料成本、可再生能源替代品的可用性以及氣候政策在減少碳排放方面的有效性。此外,由於碳價機制如配額交易系統和碳稅在許多國家仍屬相對新的政策,因此缺乏準確預測所需的歷史數據。我們的方法著重於有效地整合新聞資訊,通過引入政府政策、市場供需、經濟狀況、能源價格、氣候變化事件和投資者情緒等多個影響因素的有意義的新聞資訊,以增強基於Transformer的時間序列模型的預測能力。為了實現這一目標,我們使用ChatGPT將新聞數據轉化為基於不同觀點的多個強度指標,這些指標有助於預測價格上升。這為模型提供了更多具有資訊量的新聞輸入。此外,我們提出了NTEformer,這是一種新的方式,相較於最廣泛使用的早期連接方法,將文本數據與時間序列模型相結合,並引入了News-Trend Extractor,旨在更好地利用新聞資訊。我們在模型的解碼器中增加了一個News-Trend Extractor,專門用於從新聞數據中學習。通過一系列的實驗,我們將NTEformer與其他結合時間序列數據和文本的方法進行了比較,證明了其優異的性能。

通過有效整合新聞資訊並充分利用新聞趨勢提取器的專業知識,NTEformer模型在預測碳交易價格方面提供了增強的能力,相比不使用新聞資訊的方法,將整體誤差減少了顯著的28%。全面的分析和實驗驗證了我們方法的有效性,展示了其優於其他融合策略的能力。
摘要(英) Due to the problems caused by global warming, many countries have initiated carbon emission restrictions, leading to the emergence of carbon trading markets and a growing demand for accurate carbon price predictions. In the realm of time series forecasting, various methods exist to improve prediction accuracy. Predicting carbon pricing is difficult due to several influential factors. These factors encompass political and economic conditions, technological advancements, evolving climate policies, fluctuating fossil fuel costs, the availability of renewable energy alternatives, and the effectiveness of climate policies in reducing carbon emissions. Furthermore, limited historical data exists for accurate predictions, as carbon pricing mechanisms like cap-and-trade systems and carbon taxes are relatively new policies in many countries. Our approach focuses on effectively incorporating news information to enhance the predictive capabilities of the Transformer-based time series model by introducing meaningful news information based on several influential factors, including government policies, market supply and demand, economic conditions, energy prices, climate change events, and investor sentiment. To achieve this, we employ ChatGPT to transform news data into multiple strength indicators based on different perspectives that contribute to price increases. This provides us with more informative news inputs for the model. Furthermore, we propose NTEformer, a novel way, compared to the most widely used early concatenation method, to combine text data into time series model with News-Trend Extractor, designed to better leverage news information. We augment the decoder of the model with a News-Trend Extractor, specifically designed to learn from news data. Through a series of experiments, we compare NTEformer with other methods that combine time series data and text, demonstrating its superior performance.

By effectively integrating news information and leveraging the expertise of the News-Trend Extractor, the NTEformer model offers enhanced capabilities in predicting carbon trading prices, reducing the overall error by a remarkable 28% compared to the method without using news information. The comprehensive analysis and experiments validate the effectiveness of our approach, showcasing its ability to outperform other fusion strategy.
關鍵字(中) ★ 時間序列預測
★ 碳價格預測
★ 聊天生成預訓練轉換器
★ 深度學習
關鍵字(英) ★ Time Series Forecasting
★ Carbon Price Prediction
★ ChatGPT
★ Deep Learning
論文目次 中文摘要 i
Abstract iii
誌謝 v
Contents vii
List of Figures ix
List of Tables x

1 Introduction 1
1.1 Time Series Forecasting 2
1.2 Fusion Strategy 3
1.3 Reliable News Source 4
1.4 Research Objectives 5
2 Related Work 7
2.1 CarbonEmission 7
2.2 Carbon Emission Allowances Forecasting 8
2.3 Time Series Forecasting 9
2.4 Transformer-based Time Series Forecasting 9
2.5 Fusion Strategy 10
2.6 News Transformation by ChatGPT 12
3 Methodology 14
3.1 NTEformer With Time Series Seasonal Information 15
3.2 NTEformer 16
3.3 News Impact Assessment With ChatGPT 17
3.4 Multi-filter Decomposition Block 18
3.5 Model Input 19
3.6 News-Trend Extractor 20
4 Dataset And Metrics Carbon 22
4.1 Carbon Data 22
4.2 News Data 23
4.3 ChatGPT Transformation 25
5 Experiments And Analysis 30
5.1 Main Results 31
5.1.1 NTEformer With Time Series Seasonal Information 32
5.1.2 NTEformer 33
5.1.3 News-Trend Extractor 35
5.2 More Experiments 38
5.3 Ablation Study 39
6 Conclusion 41
7 Future Work 43
Bibliography 44
參考文獻 [1] D. Salinas, V. Flunkert, and J. Gasthaus, “Deepar: Probabilistic forecasting with autoregressive recurrent networks,” Feb. 2019.
[2] G.Lai,W.-C.Chang,Y.Yang,andH.Liu,“Modelinglong-andshort-termtemporal patterns with deep neural networks,” Apr. 2018.
[3] A. Borovykh, S. Bohte, and C. W. Oosterlee, “Conditional time series forecasting with convolutional neural networks,” Sep. 2018.
[4] R. Sen, H.-F. Yu, and I. Dhillon, “Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting,” Oct. 2019.
[5] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” Jan. 2022.
[6] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond efficient transformer for long sequence time-series forecasting,” Mar. 2021.
[7] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, “Etsformer: Exponential smooth- ing transformers for time-series forecasting,” Jun. 2022.
[8] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” Jun. 2022.
[9] Y. Liu, H. Wu, J. Wang, and M. Long, “Non-stationary transformers: Exploring the stationarity in time series forecasting,” Oct. 2022.
[10] D. Du, B. Su, and Z. Wei, “Preformer: Predictive transformer with multi-scale segment-wise correlations for long-term time series forecasting,” Feb. 2022.
[11] Z.Liu,Y.Li,andH.Liu,“Fuzzytime-seriespredictionmodelbasedontextfeatures and network features,” Neural Computing and Applications, Mar. 2021.
[12] N. Kanungsukkasem and T. Leelanupab, “Financial latent dirichlet allocation (finlda): Feature extraction in text and data mining for financial time series pre- diction,” IEEE Access, vol. 7, pp. 71 645–71 664, 2019.
[13] K. Keswani, I. Das, B. Shrivastava, A. Gupta, and R. Katarya, “Lda based model for mining textual features from financial news articles,” in 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Greater Noida, India: IEEE, Dec. 2020, pp. 43–48.
[14] P.Xu,X.Zhu,andD.A.Clifton,“Multimodallearningwithtransformers:Asurvey,” Jun. 2022.
[15] A. Lopez-Lira and Y. Tang, “Can chatgpt forecast stock price movements? return predictability and large language models,” Rochester, NY, Apr. 2023.
[16] Y. Hao, C. Tian, and C. Wu, “Modelling of carbon price in two real carbon trading markets,” Journal of Cleaner Production, vol. 244, p. 118556, 2020.
[17] L.-T. Zhao, J. Miao, S. Qu, and X.-H. Chen, “A multi-factor integrated model for carbon price forecasting: Market interaction promoting carbon emission reduction,” Science of The Total Environment, vol. 796, p. 149110, 2021.
[18] M. Yahşi, E. Çanakoğlu, and S. Ağralı, “Carbon price forecasting models based on big data analytics,” Carbon Management, vol. 10, no. 2, pp. 175–187, 2019.
[19] B. Box, G. Jenkins, G. Reinsel, and G. Ljung, Time Series Analysis: Forecasting and Control, Jan. 2016, vol. 68.
[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” Dec. 2017.
[21] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “Enhancing the locality and breaking the memory bottleneck of transformer on time series forecast- ing,” Jan. 2020.
[22] Y. Yang and J. Lu, “A fusion transformer for multivariable time series forecasting: The mooney viscosity prediction case,” Entropy, vol. 24, no. 4, p. 528, Apr. 2022.
[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Jan. 2017.
指導教授 蔡宗翰 審核日期 2023-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明