博碩士論文 88541008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.217.81.135
姓名 洪龍成(Lon-CHen Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適應性模糊滑動控制器設計及其應用
(Design of the Adaptive Fuzzy Sliding-Mode Controller and Its Applications)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對一般具有不明確的動態非線性系統,提出具有適應性的模糊滑動控制器,以滑動曲面當作模糊邏輯控制器的輸入並採用直接型的調整法則與間接型的調整法則來調整控制器的後件部參數,來達成系統穩定的目的。同時並使其系統具有強健性與適應性。
大略可以分成以下三點:
1.在降低輸入變數方面,設計以距離型為基礎的模糊輸入類似模糊滑動模態控制器,並基於李阿普若夫穩定性定理來推導出模糊調整律並應用於具有不明確的混沌系統中。所設計的調整法則是針對距離型為基礎的模糊滑動控制器來調整後件部參數,並結合盲區(dead-zone)的特性使得調整法則具有強健性。
2.針對欠驅動四階的非線性系統提出解耦合適應性模糊邏輯控制器,除了近似系統的理想等效控制器外還改善滑動模態控制器中抖動現象。在欠驅動非線性系統方面,引用解耦合方式來處理,藉由兩個子系統滑動模式所建構出一個滑動曲面來當作模糊邏輯控制器輸入,並藉由李阿普若夫來推導出調整律,以調整控制器的後件部參數,並藉由估測方式來推導出抖動控制器的增益大小。同時針對系統動態的性能,以控制命令當作輸入經由模糊推論來調整兩個子系統的滑動向量以求得適當值,進而改善系統的性能。
3.針對多輸入/多輸出的雙軸機械手臂系統來設計兩個單輸入/單輸出的適應性模糊滑動控制器來完成控制目的,所採用方法是以滑動曲面當作模糊邏輯的輸入並以間接式的調整法則來近似系統的未知參數,而系統中的近似誤差或是外來干擾會對追蹤誤差有所影響。所以結合 控制觀念抑制這些干擾,當系統的所有狀態和訊號均是有界時,近似誤差或是外界干擾對追蹤誤差可以被設定到一可接受範圍值內,而達到所期望的性能反應。
以上針對單輸入/單輸出的混沌系統、單輸入/多輸出的欠驅動系統與多輸入/多輸出的機械手臂系統來模擬以說明方法的可行性,並驗證系統的適應性、強健性與穩定性。
摘要(英) This work presents an adaptive fuzzy sliding-mode controller for a class of uncertain nonlinear systems. The controller design deals with handles the problems of the dimensionality of fuzzy input variables in fuzzy logic control, and effectively frees it from the chattering phenomena in sliding-mode control. The designed adaptive fuzzy controller based on sliding-mode has these features. The main results are as follows.
1. An adaptive fuzzy sliding-mode control strategy for a class of chaotic oscillators is presented. This class of chaotic systems includes both externally and parametrically excited systems. The controller can track the states and disturbances of at nonlinear system and construct an adaptive law, even when the exact model of the system is not known. This distance-based adaptive fuzzy sliding-mode control method makes three main contributions to this proposed model-free fuzzy sliding-mode control. First, it removes the trial-and-error process for finding suitable fuzzy rules, thus significantly decreasing the computational effort. Second, the fuzzy adaptation mechanism reduces the effects of parameter variations and disturbances. Considering the existing approaches of handling external disturbances, the proposed approach does not need a bound to be known; only requiring that it exists, and can guarantee that the state trajectory be zero. Finally, this on-line modification rule with dead-zone also improves the stability property, and increasing the speed at which the sliding surface can be reached.
2. A decoupled adaptive fuzzy sliding-mode control design scheme is described, along with a consequence adaptation, for a class of fourth-order nonlinear systems. Every subsystem, which is decoupled into two second-order systems, is said to have a main and a sub-control purpose. Two sliding surfaces are built from the state variables of the decoupled subsystem. The main and sub-target conditions for these sliding surfaces, and an intermediate variable obtained from the sub-sliding surface condition is then introduced. The proposed adaptation law, which results from the direct adaptive approach, is adopted to determine the appropriate center of the unknown system variables. The membership functions in the THEN-part vary according to the width of the adaptation of consequence. If the bound of the estimated error chosen is too large, then the control effort causes significant chattering. If the estimate error bound chosen is too small, the stability of the control system cannot be ensured. The proposed method is robust in the presence of uncertainties and bounded external disturbances. Besides, with the effects on system dynamic performance, both the slope of sliding-mode surface, are automatically tuned by real-time fuzzy inference, respectively.
3. A robust indirect adaptive fuzzy sliding-mode controller for a robotic manipulators is designed. This controller is adopted for a class of multiple-input multiple-output systems with unknown non-linear dynamics. Indeed, it is suggested that an on-line fuzzy adaptation methods can approximate unknown non-linear functions to design the sliding-mode control. An indirect adaptive fuzzy sliding-mode control technique is adopted to attain tracking for a robot manipulator in cases with external disturbances. The proposed methodology combines the attenuation technique, fuzzy logic approximation method, and adaptive control algorithm to generate a robust tracking control design for a robotic manipulator. The adaptive fuzzy approximation technique is adopted as rough tuning while the disturbance attenuation technique is adopted for fine-tuning. With this adaptive fuzzy control algorithm not only assures the stability of the closed-loop, but also maintains the need tracking performance.
關鍵字(中) ★ 滑動模式
★ 適應性
★ 模糊邏輯
關鍵字(英) ★ sliding-mode
★ adaptive
★ fuzzy logic
論文目次 Abstract I
Nomenclature II
List of Figures VI
Chapter 1 Introduction 1
1.1 Motivation and Background 1
1.2 Review of Previous Works 3
1.3 Purpose and Contributions 9
1.4 Organization of the Dissertation 14
Chapter 2 Preliminary 16
2.1 Sliding-Mode Controller Design 16
2.2 Adaptive Fuzzy Sliding-Mode Controller Design 18
2.3 Summary 22
Chapter 3 Fuzzy Sliding-Mode Control with Adaptive Method for
Chaotic Systems 23
3.1 Introduction 23
3.2 Problem Formulation 24
3.3 Distance-Based Adaptive Fuzzy Sliding-Mode Control 26
3.4 Stability Analysis 31
3.5 Computer Simulation Results 32
3.6 Summary 35
Chapter 4 Decoupled Adaptive Fuzzy Sliding-Mode Control for Fourth-Order Nonlinear Systems 56
4.1 Introduction 56
4.2 Problem Formulation 58
4.3 Decoupled Adaptive Fuzzy Sliding-Mode Control 61
4.4 Computer Simulation Results 68
4.5 Summary 73
Chapter 5 Robust Indirect Adaptive Fuzzy Sliding-Mode Control for Robotic Manipulator 87
5.1 Introduction 87
5.2 Problem Formulation 89
5.3 Robust Indirect Adaptive Fuzzy Sliding-Mode Control 92
5.4 Computer Simulation Results 98
5.5 Summary 103
Chapter 6 Conclusions and Suggestions for Future Research 123
6.1 Conclusions 123
6.2 Suggestions for Future Research 128
References 130
參考文獻 [1] D. Driankov, H. Hellendoom and M. Rainfrank, “An introduction to fuzzy control,” Springer, Berlin, 1993.
[2] V. Novak, “Fuzzy control from the logical point of view,” Fuzzy Sets and Syst., vol. 66, no. 2, pp. 159-173, 1994.
[3] M. S. Ahmed, U. L. Bhatti, F. M. Al-Sunni and M. El-Shafei, “Design of a fuzzy servo-controller,” Fuzzy Sets and Syst., vol. 124, no. 2, pp. 231-247, 2000.
[4] P. Kulczycki and R. Wisniewski, “Fuzzy controller for a system with uncertain load,” Fuzzy Sets and Syst., vol. 131, no. 2, pp. 185-195, 2002.
[5] P. Sooraksa and G. Chen, “Mathematical modeling and fuzzy control of a flexible-link robot arm,” Mathematical and Computer Modelling, vol. 27, no. 6, pp. 73-93, 1998.
[6] R. J. Wai, C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Syst., vol. 143, no. 2, pp. 295-310, 2004.
[7] D. Liu, J. Yi, D. Zhao and W. Wang,” Adaptive sliding mode fuzzy control for a two-dimensional overhead crane,” Mechatronics, vol. 15, no. 5, pp. 505-522, 2005.
[8] C. S. Tseng and B. S. Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. on Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[9] B. S. Chen, C. H. Lee, and Y. C. Chang, “H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,” IEEE Trans. on Fuzzy Syst., vol. 4, no. 1, pp. 32-43, 1996.
[10] C. S. Tseng and B. S. Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,” IEEE Trans. on Fuzzy Syst., vol. 9, no. 6, pp. 795-809, 2001.
[11] Y. C. Chang, “Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and approaches,” IEEE Trans. on Fuzzy Syst., vol. 9, no. 2, pp. 278-292, 2001. H∞
[12] C. M. Lin, Y. F. Peng and C. F. Hsu, “Robust cerebellar model articulation controller design for unknown nonlinear systems,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 51, no. 7, p.p. 354-358, 2004.
[13] H. H. Choi, “On the uncertain variable structure systems with bounded controllers,” Journal of the Franklin Institute, vol. 340, no. 2, pp. 135-146, 2003.
[14] A. J. Koshkouei, K. J. Burnham and A. S. I. Zinober, “Dynamic sliding mode control design,” Control Theory and Applications, IEE Proc., vol. 152, no. 4, pp. 392-396, 2005.
[15] J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. on Ind. Electron, vol. 40, no. 1, pp. 2-22, 1993.
[16] C. T. Chen and S. T. Peng, “Design of a sliding mode control system for chemical processes,” Journal of Process Control, vol. 15, no. 5, pp. 515-530, 2005.
[17] Y. Wu, X. Yu and M. Zhihong, “Terminal sliding mode control design for uncertain dynamic systems,” Systems & Control Letters, vol. 34, no. 5, pp. 281-287, 1998.
[18] W. C. Yu, G. J. Wang and C. C. Chang, “Discrete sliding mode control with forgetting dynamic sliding surface,” Mechatronics, vol. 14, no. 7, pp. 737-755, 2004.
[19] R. N. Gasimov, A. Karamancıoglu and A. Yzici, “A nonlinear programming approach for the sliding mode control design,” Applied Mathematical Modelling, vol. 29, no. 11, pp. 1135-1148, 2005.
[20] X. Yu and M. Zhihong, “Multi-input uncertain linear systems with terminal sliding-mode control,” Automatica, vol. 34, no. 3, pp. 389-392, 1998.
[21] S. B. Phadke, “Sliding mode control of linear systems with mismatched uncertainties,” Automatica, vol. 32, no. 2, pp. 285-286, 1996.
[22] J. Adamy and A. Flemming, “Soft variable-structure controls: a survey,” Automatica, vol. 40, no. 11, pp. 1821-1844, 2004.
[23] R. Palm and D. Driankov, “Design of a fuzzy gain scheduler using sliding mode control principles,” Fuzzy Sets and Syst., vol. 121, no. 1, pp. 13-23, 2001.
[24] L. X. Wang, “Adaptive fuzzy systems and control-design and stability analysis,” Prentice-Hall, Englewood Cliggs, NJ, pp. 140-154, 1994.
[25] L. X. Wang, “A supervisory controller for fuzzy control systems that guarantees stability,” IEEE Trans. on Automat. Control, vol. 39, no. 9, pp. 1845-1847, 1994.
[26] F. M. Yu, H. Y. Chung and S. Y. Chen, “Fuzzy sliding mode controller design for uncertain time-delayed systems with nonlinear input,” Fuzzy Sets and Syst., vol. 140, no. 2, pp. 359-374, 2003.
[27] M. M. Abdelhameed, “Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators,” Mechatronics, vol. 15, no. 4, pp. 439-458, 2005.
[28] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets and Syst., vol. 48, pp. 279-287, 1992.
[29] Z. M. Yeh, “Adaptive multivariable fuzzy logic controller,” Fuzzy Sets and Syst., vol. 86, no. 1, pp. 43-60, 1997.
[30] J. C. Wu and T. S. Liu, “A sliding-mode approach to fuzzy control design,” IEEE Trans. on Control Systems Technol., vol. 4, no. 2, pp. 141-151, 1996.
[31] S. B. Choi and J. S. Kim, “A fuzzy sliding mode controller for robust tracking of robotic manipulators,” Mechatronics, vol. 7, no. 2, pp. 199-216, 1997.
[32] Q. P. Ha, D. C. Rye and H. F. Durrant-Whyte, “Fuzzy moving sliding mode control with application to robotic manipulator,” Automatica, vol. 35, no. 4, pp. 607-616, 1999.
[33] B. J. Choi, S. W. Kwak and B. K. Kim, “Design of a single-input fuzzy logic controller and its properties,” Fuzzy Sets and Syst., vol. 106, no. 3, pp. 299-308, 1999.
[34] B. J. Choi, S. W. Kwak and B. K. Kim, “Design and stability analysis of single-input fuzzy logic controller,” IEEE Trans. on Systems, Man and Cyber., Part B, vol. 30, no. 2, pp. 303-309, 2000.
[35] H. Alli and O. Yakut, “Fuzzy sliding-mode control of structures,” Control Systems Technology, Engineering Structures, vol. 27, pp. 277-284, 2005.
[36] S. Tong and H. X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems,” IEEE Trans. on Fuzzy Syst., vol. 11, no. 3, pp. 354-360, 2003.
[37] A. Elshabrawy and H. M. Schwartz, “Fuzzy sliding mode control for a singularly perturbed systems,” IEEE Annual Meeting of the Fuzzy Information, Proc. NAFIPS, vol. 1, pp. 238-241, 2004.
[38] X. Yu, Z. Man and B. Wu, “Design of fuzzy sliding-mode control systems,” Fuzzy Sets and Syst., vol. 95, no. 3, pp. 295-306, 1998.
[39] S. C. Lin and Y. Y. Chen, “Design of self-learning fuzzy sliding mode controllers based on genetic algorithms,” Fuzzy Sets and Syst., vol. 86, no. 2, pp. 139-153, 1997.
[40] B. Yoo and W. Ham, “Adaptive fuzzy sliding-mode control of nonlinear system,” IEEE Trans. on Fuzzy Syst., vol. 6, no. 2, pp. 315-321, 1998.
[41] W. J. Wang and H. R. Lin, “Fuzzy control design for the trajectory tracking in phase plane,” IEEE Trans. on Syst, Man, Cybern A, vol. 28, pp.710-719, 1998.
[42] J. Wang, A. B. Rad and P. T. Chan, “Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching,” Fuzzy Sets and Syst., vol. 122, no. 1, pp. 21-30, 2001.
[43] P. T. Chan, A. B. Rad and J. Wang, “Indirect adaptive fuzzy sliding mode control: Part II: parameter projection and supervisory control,” Fuzzy Sets and Syst., vol. 122, no. 1, pp. 31-43, 2001.
[44] R. J. Wai, C. M. Lin and C. F. Hsu, “Self-organizing fuzzy control for motor-toggle servomechanism via sliding-mode technique” Fuzzy Sets and Syst., vol. 131, no. 2, pp. 235-249, 2002.
[45] C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding-mode control for induction servomotor systems,” IEEE Trans. on Energy Conversion, vol. 19, no. 2, pp. 362-368, 2004.
[46] T. M. R. Akbarzadeh and R. Shahnazi, “Direct adaptive fuzzy PI sliding mode control for a class of uncertain nonlinear systems,” IEEE conf. on Systems, Man and Cyber., Part B, vol. 3, pp. 2548-2553, 2005.
[47] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821-825, 1990.
[48] Z. Li, C. Han and S. Shi, “Modification for synchronization of Rossler and Chen chaotic systems,” Physics Letters A, vol. 301, no. 3-4, pp. 224-230, 2002.
[49] P. Saha, S. Banerjee and A. R. Chowdhury, “Chaos, signal communication and parameter estimation,” Physics Letters A, vol. 326, no. 1-2, pp. 133-139, 2004.
[50] S. Etemadi, A. Alasty and H. Salarieh, “Synchronization of chaotic systems with parameter uncertainties via variable structure control,” Physics Letters A, vol. 357, no. 1, 28, pp. 17-21, 2006.
[51] J. G. Lu, “Generating chaos via decentralized linear state feedback and a class of nonlinear functions,” Chaos, Solitons & Fractals, vol. 25, no. 2, pp. 403-413, 2005
[52] G. P. Jiang and W. X. Zheng, “A simple method of chaos control for a class of chaotic discrete-time systems,” Chaos, Solitons & Fractals, vol. 23, no. 3, pp. 843-849, 2005.
[53] K. W. Lee and S. N. Singh, “Robust control of chaos in Chua’s circuit based on internal model principle,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1095-1107, 2007.
[54] L. Huang, M. Wang and R. Feng, “Parameters identification and adaptive synchronization of chaotic systems with unknown parameters,” Physics Letters A, vol. 342, no. 4, pp. 299-304, 2005.
[55] J. A. K. Suykens, P. F. Curran, J. Vandewalle, L. O. Chua, “Robust nonlinear H∞ synchronization of chaotic Lur’e systems,” IEEE Trans. on Circuits and Syst. I: Fundamental Theory and Applications, vol. 44, no. 10, pp. 891-904, 1997.
[56] Y. Wang, Z. H. Guan and X. Wen, “Adaptive synchronization for Chen chaotic system with fully unknown parameters,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 899-903, 2004.
[57] Z. Li, C. Han and S. Shi, “Modification for synchronization of Rossler and Chen chaotic systems,” Physics Letters A, vol. 301, no. 3-4, pp. 224-230, 2002.
[58] H. Zhang and X. K. Ma, “Synchronization of uncertain chaotic systems with parameters perturbation via active control,” Chaos, Solitons & Fractals, vol. 21, no. 1, pp. 39-47, 2004.
[59] D. Li, “T-S fuzzy realization of chaotic Lü system,” Physics Letters A, vol. 356, no. 1, pp. 51-58, 2006.
[60] J. H. Kim, C. W. Park, E. Kim and M. Park, “Fuzzy adaptive synchronization of uncertain chaotic systems,” Physics Letters A, vol. 334, no. 4, pp. 295-305, 2005.
[61] N. Vasegh and V. J. Majd, “Adaptive fuzzy synchronization of discrete-time chaotic systems,” Chaos, Solitons & Fractals, vol. 28, no. 4, pp. 1029-1036, 2006.
[62] M. Reyhanoglu, S. Cho and N. H. McClamroch, “Discontinuous feedback control of a special class of underactuated mechanical systems,” International Journal of Robust and Nonlinear Control, vol. 24, pp. 265-281, 2000.
[63] K. Yoshida and H. Kawabe, “A design of saturating control with a guaranteed cost and its application to the crane control system,” IEEE Trans. on Automat. Control, vol. 37, pp. 121–127, 1992.
[64] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEE Proc. Control Theory and Applications, vol. 151, no. 6, pp. 683-690, 2004.
[65] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding mode control”, IEEE Trans. on Fuzzy Syst., vol. 6. no. 3, pp. 426-435, 1998.
[66] D. X. Zheng and J. C. Lo, “Adaptive fuzzy sliding mode control,” M.S. thesis,
National Central University, Department of Mechanical Engineering, 1996.
[67] R. Colbaugh K. Glass and H. Seraji, “Adaptive tracking control of manipulators: theory and experiments,” Robotics and Computer-Integrated Manufacturing, vol. 12, no. 3, pp. 209-216, 1996.
[68] T. Y. Kuc and W. G. Han, “An adaptive PID learning control of robot manipulators,” Automatica, vol. 36, no. 5, pp. 717-725, 2000.
[69] T. Yu, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, no. 1, pp. 51-56, 1998.
[70] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. on Automatic Control, vol. 22, pp. 212-22, 1997.
[71] A. Cavallo and L. Villani, “Sliding manifold approach to the control of rigid robots: experimental results,” Control Engineering Practice, vol. 5, no. 5, pp. 619-625, 1997.
[72] K. C. Chiou and S. J. Huang, “An adaptive fuzzy controller for robot manipulators,” Mechatronics, vol. 15, no. 2, pp. 151-177, 2005.
[73] Y. C. Hsu, C. Chen and H. X. Li, “A fuzzy adaptive variable structure controller with applications to robot manipulators,” IEEE Trans. on Syst., Man and Cyber., Part B, vol. 31, no. 3, pp. 331-40, 2001.
[74] J. E. Slotine and W. Li, “Applied Nonlinear Control,” Englewood Cliffs, NJ: Prantice-Hall, 1991.
[75] M. Haeri and A. A. Emadzadeh, “Synchronizing different chaotic systems using active sliding mode control,” Chaos, Solitons & Fractals, vol. 31, no. 1, pp. 119-129, 2007.
[76] C. C. Fuh and H. H. Tsai, “Control of discrete-time chaotic systems via feedback linearization,” Chaos, Solitons, & Fractals, vol. 13, no. 2, pp. 285-294, 2002.
[77] J. J. Yan, “Design of robust controllers for uncertain chaotic systems with nonlinear inputs,” Chaos, Solitons and Fractals, vol. 19, no. 3, pp. 541-547, 2004.
[78] C. M. Lin and C. H. Chen, “CMAC-based supervisory control for nonlinear chaotic systems,” Chaos, Solitons & Fractals, 2006.
[79] C. F. Hsu and C. M. Lin, “Fuzzy-identification-based adaptive controller design via backstepping approach,” Fuzzy Sets and Syst., vol. 151, no 1, pp. 43-57, 2005.
[80] J. Y. Chen, P. S. Tsai and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” IEE Proc. Control Theory and
Applications, vol. 152, no. 2, pp. 133-137, 2005.
[81] S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control,” IEEE Trans. on Fuzzy Syst., vol. 11, no. 4, pp. 550-559, 2003.
[82] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persistent excitation,” IEEE Trans. on Automatic Control, vol. 32, no. 2, pp. 134-145, 1987.
[83] B. Siciliano and L. Villani, “Adaptive compliant control of robot manipulators,” Control Engineering Practice, vol. 4, no. 5, pp. 705-712, 1996.
[84] H. Bezine, N. Derbel and A. M. Alimi, “Fuzzy control of robot manipulators: some issues on design and rule base size reduction,” Engineering Applications of Artificial Intelligence, vol. 15, no. 5, pp. 401-416, 2002.
[85] L. Peng and P. Y. Woo, “Neural-fuzzy control system for robotic manipulators,” IEEE Trans. on Control Systems Magazine, vol. 22, no. 1, pp. 53-63, 2002.
[86] M. M. Abdelhameed, “Adaptive neural network based controller for robots,” Mechatronics, vol. 9, no. 2, pp. 147-162, 1999.
[87] R. J. Wai, “Tracking control based on neural network strategy for robot manipulator,” Neurocomputing, vol. 51, pp. 425-445, 2003.
[88] H. Medhaffar, N. Derbel and T. Damak, “A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator,” International Journal of Modelling, Identification and Control, vol. 1, no.1, pp. 23-29, 2006.
[89] S. B. Labiod, S. Mohamed and T. M. Guerra, “Adaptive fuzzy control of a class of MIMO nonlinear systems,” Fuzzy Sets and Syst., vol. 111, no. 2, pp. 153-167, 2000.
[90] R. J. Wai and J. D. Lee, “Intelligent Motion Control for Linear Piezoelectric Ceramic Motor Drive,” IEEE Trans. on Syst., Man and Cyber., Part B, vol. 34, no. 5, pp. 2100-2111, 2004.
[91] C. S. Ting, “An adaptive fuzzy observer-based approach for chaotic synchronization,” International Journal of Approximate Reasoning, vol. 39, no.1, pp. 97-114, 2005.
[92] J. J. Yan, W. D. Chang, J. S. Lin and K. K. Shyu, “Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties,” Physics Letters A, vol. 335, no. 4, pp. 274-281, 2005.
[93] H. Guo, S. Lin and J. Liu, “A radial basis function sliding mode controller for
chaotic Lorenz system,” Physics Letters A, vol. 351, no. 4, pp. 257-261, 2006.
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2007-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明