參考文獻 |
Anhaeusser, C.R., 2014. Archaean greenstone belts and associated granitic rocks–a review. Journal of African Earth Sciences, 100, pp.684-732.
Arai, S., 1994a. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191-204.
Arai, S., 1994b. Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research 59, 279-293.
Arndt, N., 2003. Komatiites, kimberlites, and boninites. Journal of Geophysical Research 108, 2293.
Arndt, N. T., Lesher, C. M., Barnes S. J, 2008. Komatiite. Cambridge: Cambridge University Press.
Aswad, K.J., Aziz, N.R., Koyi, H.A., 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological magazine 148, 802-818.
Ballhaus, C., Berry, R.F. and Green, D.H., 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1), pp.27-40.
Barley, M.E., 1986. Incompatible-element enrichment in Archean basalts: a consequence of contamination by older sialic crust rather than mantle heterogeneity. Geology, 14(11), pp.947-950.
Barnes S. J., Arndt N. T., 2019. Distribution and Geochemistry of Komatiites and Basalts through the Archean. In: Van Kranendonk M. J. , Bennett V. C. , Hoffmann E. (eds) Earth′s Oldest Rocks, 2nd edn. Elsevier, pp. 103–132.
Bebout, G.E. and Barton, M.D., 1989. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology, 17(11), pp.976-980.
Becker, H., Shirey, S.B. and Carlson, R.W., 2001. Effects of melt percolation on the Re–Os systematics of peridotites from a Paleozoic convergent plate margin. Earth and Planetary Science Letters, 188(1-2), pp.107-121.
Bibikova, E.V., Kirnozova, T.I., Makarov, V.A., Drugova, G.M. and Bushmin, S.A., 1984. The Time of Volcanism in The Olondo Greenstone-Belt (East-Siberia). Doklady Akademii Nauk SSSR, 279(6), pp.1424-1428.
Bogomolova, L.M, 1993. Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy. Trofimuk Inst. Petrol. Geol. Geophys., Siberian Branch RAS, Novosibirsk (in Russian).
Braun, J.-J., Pagel, M., Herbilln, A., Rosin, C., 1993. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochimica et Cosmochimica Acta 57, 4419-4434.
Brenner, A.R., Fu, R.R., Evans, D.A., Smirnov, A.V., Trubko, R. and Rose, I.R., 2020. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Advances, 6(17), p.eaaz8670.
Carlson, R.W., 2005. Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos, 82(3-4), pp.249-272.
Carlson, R.W., Pearson, D.G. and James, D.E., 2005. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics, 43(1).
Castillo, P.R., 2008. Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3-4), pp.451-462.
Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D. and Windley, B.F., 2009. Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), pp.1-36.
Chu, Z., Yan, Y., Chen, Z., Guo, J., Yang, Y., Li, C. and Zhang, Y., 2015. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples. Geostandards and Geoanalytical Research, 39(2), pp.151-169.
Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q. and Zhang, Q., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11), pp.1021-1024.
Cloetingh, S., Koptev, A., Kovács, I., Gerya, T., Beniest, A., Willingshofer, E., Ehlers, T.A., Andrić‐Tomašević, N., Botsyun, S., Eizenhöfer, P.R. and François, T., 2021. Plume‐Induced Sinking of Intracontinental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation?. Geochemistry, Geophysics, Geosystems, 22(2), p.e2020GC009482.
Coleman, R.G., 1977. What is an Ophiolite?. In Ophiolites (pp. 1-7). Springer, Berlin, Heidelberg.
Condie, K.C. and Pease, V. , 2008. When did plate tectonics begin on planet Earth? (Vol. 440). Geological Society of America.
Condie, K.C., 1976. Trace-element geochemistry of Archean greenstone belts. Earth-Science Reviews 12, 393-417.
Condie, K.C., 1981. Archean greenstone belts. Elsevier.
Condie, K.C., 2005. TTGs and adakites: are they both slab melts?. Lithos, 80(1-4), pp.33-44.
Condie, K.C., 2021. Earth as an evolving planetary system. Academic Press.
Creaser, R.A., Papanastassiou, D.A. and Wasserburg, G.J., 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55(1), pp.397-401.
de Sampaio, P.A.B., Neto, A.Soares, M.B., Alves, F.E.A., Fabricio-Silva,Silveira, V.D. and Gasparotto, W., 2022. The record of plume-arc interaction in the Southern São Francisco Craton–Insights from the Pitangui greenstone belt. Journal of South American Earth Sciences, 116, p.103857.
de Wit, M.J. and Ashwal, L.D., 1995. Greenstone belts: what are they?. South African Journal of Geology, 98(4), pp.505-520.
de Wit, M.J., 2004. Archean greenstone belts do contain fragments of ophiolites. Developments in Precambrian Geology 13, 599-614.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. nature, 347(6294), pp.662-665.
Defant, M.J., Jackson, T.E., Drummond, M.D., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C. and Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149(4), pp.569-579.
Dewey, J.F. and Bird, J.M., 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14), pp.3179-3206.
Dey, S., Pal, S., Balakrishnan, S., Halla, J., Kurhila, M. and Heilimo, E., 2018. Both plume and arc: Origin of Neoarchaean crust as recorded in Veligallu greenstone belt, Dharwar craton, India. Precambrian Research, 314, pp.41-61.
Dhuime, B., Wuestefeld, A. and Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7), pp.552-555.
Dick, H.J., Bullen, T., 1984.Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76.
Dilek, Y. and Flower, M.F., 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1), pp.43-68.
Dilek, Y. and Newcomb, S., 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America, pp.1-16.
Dilek, Y. and Thy, P., 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 113(1-2), pp.68-87.
Drummond, M., Defant, M., & Kepezhinskas, P. (1996). Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 87(1-2), 205-215. doi:10.1017/S0263593300006611
Eiler, J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in mineralogy and geochemistry, 43(1), pp.319-364.
Freer, W. and O′Reilly, R., 1980. The diffusion of Fe2+ ions in spinels with relevance to the process of maghemitization. Mineralogical Magazine, 43(331), pp.889-899.(10), pp.2112-2122.
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. and de Wit, M., 2004. Early life recorded in Archean pillow lavas. Science, 304(5670), pp.578-581.
Furnes, H., Rosing, M., Dilek, Y. and de Wit, M., 2009. Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology. Lithos, 113(1-2), pp.115-132.
Furnes, H., de Wit, M., Dilek, Y., 2014. Precambrian greenstone belts host different ophiolite types, Evolution of Archean Crust and Early Life. Springer, pp. 1-22.
Gamal El Dien, H., Arai, S., Doucet, L.S., Li, Z.X., Kil, Y., Fougerouse, D., Reddy, S.M., Saxey, D.W. and Hamdy, M., 2019. Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature communications, 10(1), p.5103.
Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F. and Liu, Y.S., 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3-4), pp.307-322.
Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C. and Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019), pp.892-897.
Gao, L., Liu, S., Zhang, B., Sun, G., Hu, Y. and Guo, R., 2019. A ca. 2.8‐Ga plume‐induced intraoceanic arc system in the eastern North China craton. Tectonics, 38(5), pp.1694-1717.
Gao, P. and Santosh, M., 2020. Mesoarchean accretionary mélange and tectonic erosion in the Archean Dharwar Craton, southern India: Plate tectonics in the early Earth. Gondwana Research, 85, pp.291-305.
Garde, A.A., Windley, B.F., Kokfelt, T.F. and Keulen, N., 2020. Archaean plate tectonics in the North Atlantic craton of West Greenland revealed by well-exposed horizontal crustal tectonics, island arcs and tonalite-trondhjemite-granodiorite complexes. Frontiers in Earth Science, 8, p.540997.
Gast, P.W., 1968. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32(10), pp.1057-1086.
Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S.V. and Whattam, S.A., 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), pp.221-225.
Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87, 249–265.
Grachev, A., Fedorovsky, V., 1981. On the nature of greenstone belts in the Precambrian. Developments in Geotectonics. Elsevier, pp. 195-212.
Green, D., Ringwood, A., 1967. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 15, 103-190.
Grocolas, T., Bouilhol, P., Caro, G. and Mojzsis, S.J., 2022. Eoarchean subduction-like magmatism recorded in 3750 Ma mafic–ultramafic rocks of the Ukaliq supracrustal belt (Québec). Contributions to Mineralogy and Petrology, 177(3), pp.1-27.
Grosch, E.G. and Slama, J., 2017. Evidence for 3.3-billion-year-old oceanic crust in the Barberton greenstone belt, South Africa. Geology, 45(8), pp.695-698.
Handler, M.R., Bennett, V.C. and Dreibus, G., 1999. Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: Implications for Re-Os systematics. Geology, 27(1), pp.75-78.
Hanmer, S. and Greene, D.C., 2002. A modern structural regime in the Paleoarchean (∼ 3.64 Ga); Isua greenstone belt, southern West Greenland. Tectonophysics, 346(3-4), pp.201-222.
Herzberg, C., 1995. Generation of plume magmas through time: an experimental perspective. Chemical Geology, 126(1), pp.1-16.
Hickey, R.L. and Frey, F.A., 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta, 46(11), pp.2099-2115.
Hiloidari, S., Satyanarayanan, M., Singh, S.P., Bhutani, R., Subramanyam, K.S.V. and Sarma, D.S., 2021. Evidence for Mesoarchean subduction in Southern Bundelkhand Craton, India: geochemical fingerprints from metavolcanics of Kurrat-Girar-Badwar Greenstone Belt. Geochemistry, 81(3), p.125787.
Hollings, P., Wyman, D. and Kerrich, R., 1999. Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province. Lithos, 46(1), pp.137-161.
Hollings, P. and Kerrich, R., 2000. An Archean arc basalt–Nb-enriched basalt–adakite association: the 2.7 Ga Confederation assemblage of the Birch–Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology, 139(2), pp.208-226.
Hyung, E. and Jacobsen, S.B., 2020. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proceedings of the National Academy of Sciences, 117(26), pp.14738-14744.
Jacobsen, S.B. and Wasserburg, G.J., 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 67(2), pp.137-150.
Jahn, B.M., Gruau, G. and Glikson, A.Y., 1982. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contributions to Mineralogy and Petrology, 80(1), pp.25-40.
Jahn, B.-M., Gruau, G., Capdevila, R., Cornichet, J., Nemchin, A., Pidgeon, R., Rudnik, V., 1998. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints. Precambrian Research 91, 333-363.
Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N. and Reichow, M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos, 113(3-4), pp.521-539.
Jenner, F.E., Bennett, V.C., Nutman, A.P., Friend, C.R.L., Norman, M.D. and Yaxley, G., 2009. Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chemical Geology, 261(1-2), pp.83-98.
Jensen L.S. , Pyke D.R. 1982. Komatiites in the Ontario portion of the Abitibi belt. Komatiites, N.T. Arndt, E.G. Nisbet (Eds.), George Allen & Unwin, London (1982), pp. 147-157
Kepezhinskas, P., Defant, M.J. and Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7), pp.1217-1229.
Kerrich, R., Wyman, D., Fan, J. and Bleeker, W., 1998. Boninite series: low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1-2), pp.303-316.
Komiya, T., Yamamoto, S., Aoki, S., Sawaki, Y., Ishikawa, A., Tashiro, T., Koshida, K., Shimojo, M., Aoki, K. and Collerson, K.D., 2015. Geology of the Eoarchean,> 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics, 662, pp.40-66.
Korenaga, J., 2013. Initiation and evolution of plate tectonics on Earth: theories and observations. Annual review of earth and planetary sciences, 41, pp.117-151.
Kotov, A.B., 2003. Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (St. Petersburg State Univ., St. Petersburg, 2003).
Kovach, V.P., Kotov, A.B., Salnikova, E.B., Popov, N.V., Velikoslavinsky, S.D., Plotkina, J.V., Wang, K.-L., Fedoseenko, A.M., 2020. The upper age boundary of the formation of the Olondo fragment of the Tokko–Khani greenstone belt, Aldan Shield: U–Pb (ID-TIMS) geochronological data. Doklady Earth Sciences 494, 767-772.
Krull-Davatzes, A.E., Byerly, G.R. and Lowe, D.R., 2010. Evidence for a low-O2 Archean atmosphere from nickel-rich chrome spinels in 3.24 Ga impact spherules, Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 296(3-4), pp.319-328.
Kusky, T.M., Li, J.-H., Tucker, R.D., 2001. The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142-1145.
Kusky, T., Windley, B.F., Polat, A., Wang, L., Ning, W. and Zhong, Y., 2021. Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth-Science Reviews, 220, p.103725.
Lagabrielle, Y., Guivel, C., Maury, R.C., Bourgois, J., Fourcade, S. and Martin, H., 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model. Tectonophysics, 326(3-4), pp.255-268.
Lahaye, Y., Arndt, N., 1996. Alteration of a komatiite flow from Alexo, Ontario, Canada. Journal of Petrology 37, 1261_1284.
Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., Zhang, Q., 2012. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences 53, 96-114.
Liang, M.C. and Mahata, S., 2015. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion. Scientific Reports, 5(1), pp.1-9.
Lin, K.Y., Wang, K.L., Chung, S.L., Bingöl, A.F., Iizuka, Y. and Lee, H.Y., 2020. Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376, p.105737.
Liu, C.Z., Liu, Z.C., Wu, F.Y. and Chu, Z.Y., 2012. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chemical Geology, 291, pp.186-198.
Lowry, D., Appel, P.W.U. and Rollinson, H.R., 2003. Oxygen isotopes of an early Archaean layered ultramafic body, southern West Greenland: implications for magma source and post-intrusion history. Precambrian Research, 126(3-4), pp.273-288.
Luguet, A., Graham Pearson, D., Nowell, G.M., Dreher, S.T., Coggon, J.A., Spetsius, Z.V. and Parman, S.W., 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319(5862), pp.453-456.
Macpherson, C.G., Chiang, K.K., Hall, R., Nowell, G.M., Castillo, P.R. and Thirlwall, M.F., 2010. Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones. Journal of Volcanology and Geothermal Research, 190(1-2), pp.25-38.
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4), pp.581-593.
Maekawa, H., Shozul, M., Fryer, P. and Pearce, J.A., 1993. Blueschist metamorphism in an active subduction zone. Nature, 364(6437), pp.520-523.
Manikyamba, C., Kerrich, R., Khanna, T.C. and Subba Rao, D.V., 2007. Geochemistry of adakites and rhyolites from the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India: implications for sources and geodynamic setting. Canadian Journal of Earth Sciences, 44(11), pp.1517-1535.
Manikyamba, C., Kerrich, R., Khanna, T.C., Krishna, A.K. and Satyanarayanan, M., 2008. Geochemical systematics of komatiite–tholeiite and adakitic-arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India. Lithos, 106(1-2), pp.155-172.
Manya, S., Maboko, M.A. and Nakamura, E., 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction?. Precambrian Research, 159(3-4), pp.241-259.
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), pp.411-429.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), pp.1-24.
Maruyama, S., Liou, J.G. and Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. International geology review, 38(6), pp.485-594.
McCarron, J.J. and Smellie, J.L., 1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica. Journal of the Geological Society, 155(2), pp.269-280.
McIntyre, T., Pearson, D., Szilas, K., Morishita, T., 2019. Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland. Contributions to Mineralogy and Petrology 174, 96.
Moyen, J.-F., Laurent, O., 2018. Archaean tectonic systems: a view from igneous rocks. Lithos 302, 99-125.
Murton, B.J., Peate, D.W., Arculus, R.J., Pearce, J.A. and Van der Laan, S., 1992. 12. Trace-Element Geochemistry Of Volcanic Rocks From Site 786: The Izu-Bonin Forearc1. In Proceedings of the Ocean Drilling Program, scientific results (Vol. 125, pp. 211-235).
Nabhan, S., Luber, T., Scheffler, F. and Heubeck, C., 2016. Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies group (∼ 3.2 Ga), Barberton Greenstone Belt, South Africa. Precambrian Research, 275, pp.119-134.
Næraa, T., Scherstén, A., Rosing, M.T., Kemp, A., Hoffmann, J., Kokfelt, T., Whitehouse, M., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627-630.
Naqvi, S.M., Khan, R.M.K., Manikyamba, C., Mohan, M.R. and Khanna, T.C., 2006. Geochemistry of the NeoArchaean high-Mg basalts, boninites and adakites from the Kushtagi–Hungund greenstone belt of the Eastern Dharwar Craton (EDC); implications for the tectonic setting. Journal of Asian Earth Sciences, 27(1), pp.25-44.
Nesbitt, R. W., Sun S., Purvis A. C., 1979. Komatiites: geochemistry and genesis. Canadian Mineralogist 17, 165 – 186 .
Neymark, L.A., Kovach, V.P., Nemchin, A.A., Morozova, I.M., Kotov, A.B., Vinogradov, D.P., Gorokhovsky, B.M., Ovchinnikova, G.V., Bogomolova, L.M., Smelov, A.P., 1993. Late Archaean intrusive complexes in Olekma granite-greenstone terrain (Eastern Siberia): geochemical and isotopic study. Precambrian Research 62, 453–472.
Nisbet, E.G., Cheadle, M.J., Arndt, N.T. and Bickle, M.J., 1993. Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos, 30(3-4), pp.291-307.
Nutman, A.P. and Friend, C.R., 2009. New 1: 20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny. Precambrian Research, 172(3-4), pp.189-211.
Nutman, A.P., Chenyshev, I.V., Baadsgaard, H., Smelov, A.P., 1992. The Aldan Shield of Siberia, USSR: the age of its Archaean components and evidence for widespread reworking in the mid-Proterozoic. Precambrian Research 54, 195-210.
Nutman, A.P., Bennett, V.C., Friend, C.R. and Yi, K., 2020. Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (< 250 to> 1000° C/GPa) explained by tectonic plate convergence in deep time. Precambrian Research, 344, p.105770.
Nutman, A.P., Bennett, V.C., Friend, C.R., Polat, A., Hoffmann, E., Van Kranendonk, M.,2021a. Fifty years of the Eoarchean and the case for evolving uniformitarianism. Precambrian Res. 367, 106442.
Nutman, A.P., Scicchitano, M.R., Friend, C.R., Bennett, V.C. and Chivas, A.R., 2021b. Isua (Greenland)~ 3700 Ma meta-serpentinite olivine Mg# and δ18O signatures show connection between the early mantle and hydrosphere: Geodynamic implications. Precambrian Research, 361, p.106249.
Palin, R.M. and White, R.W., 2016. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9(1), pp.60-64.
Parfenov, L.M., 1991. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics. Tectonophysics, 199(2-4), pp.319-342.
Parkinson, I.J. and Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), pp.1577-1618.
Peacock, S.M., 1993. The importance of blueschist→ eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5), pp.684-694.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48.
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J. and Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1), pp.36-53.
Pearson, D.G., 1999. The age of continental roots. Lithos, 48(1-4), pp.171-194.
Pearson, D.G., Parman, S.W. and Nowell, G.M., 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449(7159), pp.202-205.
Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J.W., Bodnar, R.J., Spetsius, Z.V. and Taylor, L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology, 167, pp.1-17.
Perring, C.S., Barnes, S.J. and Hill, R.E.T., 1996. Geochemistry of komatiites from Forrestania, Southern Cross Province, Western Australia: evidence for crustal contamination. Lithos, 37(2-3), pp.181-197.
Petrone, C.M. and Ferrari, L., 2008. Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?. Contributions to Mineralogy and Petrology, 156, pp.73-86.
Polat, A. and Kerrich, R., 2000. Archean greenstone belt magmatism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Science Letters, 175(1-2), pp.41-54.
Polat, A. and Kerrich, R., 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1), pp.36-52.
Polat, A. and Kerrich, R., 2002. Nd-isotope systematics of∼ 2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones. Earth and Planetary Science Letters, 202(2), pp.345-360.
Polat, A. and Longstaffe, F.J., 2014. A juvenile oceanic island arc origin for the Archean (ca. 2.97 Ga) Fiskenæsset anorthosite complex, southwestern Greenland: evidence from oxygen isotopes. Earth and Planetary Science Letters, 396, pp.252-266.
Polat, A., Appel, P.W., Fryer, B.J., 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research 20, 255-283.
Polat, A., Hofmann, A., 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research 126, 197-218.
Polat, A., Hofmann, A., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology 184, 231-254.
Popov, N.V., Smelov, A.P., Dobretsov, N.N., Bogomolova, L.M., Kartavchenko, V.G., 1990. The Olondo Greenstone Belt [in Russian]. Izd.Yakutskogo Nauchnogo Tsentra SO AN SSSR, Yakutsk.
Popov, N., Dobretsov, N., Smelov, A., Bogomolova, L., 1995. Tectonics, metamorphism, and the problems of evolution of the Olondo greenstone belt. Petrology 3, 73-86.
Puchtel, I., Zhuravlev, D., 1993. Petrology of mafic-ultramafic metavolcanics and related rocks from the Olondo greenstone belt, Aldan Shield. Petrology 1, 263-299.
Puchtel, I.S., 2004. 3.0 Ga Olondo greenstone belt in the Aldan shield, E. Siberia. Developments in Precambrian Geology 13, 405-423.
Puchtel, I.S., Samsonov, A.V., Simon, A.R., Zhuravlev, D.Z., 1989. Petrology, geochemistry and Sm-Nd age of metavolcanics from the Olondo greenstone belt. In: Dook, V.L., Neymark, L.A., Rudnik, V.A. (Eds.). The oldest rocks of the Aldan-Stanovik Shield, Eastern Siberia, USSR. Excursion guide for geological field trip to the Aldan-Stanovik Shield, July-August 1989. IGCP Project 280. Leningrad, Sevmorgeologiya. 1989. P. 27–35.
Puchtel, I.S., Frikh-Khar, D.I., Ashikhmina, N.A., Tomashpolskiy, Yw.Ya., Shirina, N.G., 1991. Metamorphic olivines in ultrabasites of Olondin greenstone belt and the problem of identification of komatitites (Aldan Shield). Int. Geol. Rev. 33, 161–173.
Puchtel, I.S., Bogatikov, O.A., Simon, A.K., 1993. The Early Precambrian crust-mantle evolution of the Olekma gneiss-greenstone terrane, Aldan Shield. Petrology 1, 451–473.
Puchtel, I.S., Hofmann, A.W., Amelin, Y.V., Garbe-Schönberg, C.D., Samsonov, A.V. and Shchipansky, A.A., 1999. Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints. Geochimica et cosmochimica acta, 63(21), pp.3579-3595.
Putlitz, B., Matthews, A. and Valley, J.W., 2000. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust. Contributions to Mineralogy and Petrology, 138(2), pp.114-126.
Reisberg, L., Zhi, X., Lorand, J.P., Wagner, C., Peng, Z. and Zimmermann, C., 2005. Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters, 239(3-4), pp.286-308.
Reubi, O. and Blundy, J., 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268), pp.1269-1273.
Ringwood A., E. Major A., 1971. Synthesis of majorite and other high pressure garnets and perovskites. Earth and Planetary Science Letters 12, 411 – 418.
Robin-Popieul, C.C., Arndt, N.T., Chauvel, C., Byerly, G.R., Sobolev, A.V. and Wilson, A., 2012. A new model for Barberton komatiites: deep critical melting with high melt retention. Journal of Petrology, 53(11), pp. 2191-2229.
Rollinson, H.R., 2009. Early Earth systems: a geochemical approach. John Wiley & Sons.
Rosen, O.M., Turkina, O.M., 2007. The oldest rock assemblages of the Siberian Craton. Developments in Precambrian Geology 15, 793-838.
Rudnick, R.L. and Walker, R.J., 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos, 112, pp.1083-1095.
Rundqvist, D.V. and Mitrofanov, F.P. eds., 1993. Precambrian Geology of the USSR. Elsevier.
Saha, D., Bachhar, P., Deb, G.K., Patranabis-Deb, S. and Banerjee, A., 2021. Tectonic evolution of the Paleoarchean to Mesoarchean Badampahar-Gorumahisani belt, Singhbhum craton, India–Implications for coexisting arc and plume signatures in a granite-greenstone terrain. Precambrian Research, 357, p.106094.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M.J. and Pubellier, M., 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11), pp.1007-1010.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J. and Defant, M., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of petrology, 37(3), pp.693-726.
Salnikova, E.B., Kovach, V.P., Kotov, A.B., Nemchin, A.A., 1996. Evolution of continental crust in the Western Aldan Shield: evidence from Sm–Nd systematics of granitoids. Petrology 4, 105-118.
Scott, D.J., St-Onge, M.R., Lucas, S.B. and Helmstaedt, H., 1991. Geology and chemistry of the early Proterozoic Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, held in Muscat, Oman, 7–18 January 1990 (pp. 817-849). Springer Netherlands.
Scott, D.J., Helmstaedt, H. and Bickle, M.J., 1992. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of Early Proterozoic oceanic crust. Geology, 20(2), pp.173-176.
Shi, R., Alard, O., Zhi, X., O′Reilly, S.Y., Pearson, N.J., Griffin, W.L., Zhang, M. and Chen, X., 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1-2), pp.33-48.
Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423-500.
Singh, S.P., Subramanyam, K.S.V., Manikyamba, C., Santosh, M., Singh, M.R. and Kumar, B.C., 2018. Geochemical systematics of the Mauranipur-Babina greenstone belt, Bundelkhand Craton, Central India: insights on Neoarchean mantle plume-arc accretion and crustal evolution. Geoscience Frontiers, 9(3), pp.769-788.
Slabunov, А.I. and Singh, V.K., 2019. Meso–Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: new data from greenstone belts. International Geology Review, 61(11), pp.1409-1428.
Smelov, A., Shatsky, V., Ragozin, A., Reutskii, V., Molotkov, A., 2012. Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan–Stanovoy shield). Russian Geology and Geophysics 53, 1012-1022.
Smith, A., Ludden, J., 1989. Nd isotopic evolution of the Precambrian mantle. Earth and Planetary Science Letters 93, 14-22.
Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M. and Hickman, A.H., 2005. Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth and Planetary Science Letters, 231(3-4), pp.221-237.
Smoliar, M.I., Walker, R.J. and Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science, 271(5252), pp.1099-1102.
Sotiriou, P., Polat, A., Windley, B.F. and Kusky, T., 2022. Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambrian Research, 368, p.106487.
Sproule, R.A., Lesher, C.M., Ayer, J.A., Thurston, P.C. and Herzberg, C.T., 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian research, 115(1-4), pp.153-186.
Stern, C.R. and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to mineralogy and petrology, 123, pp.263-281.
Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7), pp.557-560.
Stern, R.J., 2018. The evolution of plate tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132), p.20170406.
Sun, S.-S., Nesbitt, R.W., 1978. Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6, 689-693.
Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345.
Szilas, K., van Hinsberg, V., McDonald, I., Næraa, T., Rollinson, H., Adetunji, J., Bird, D., 2018. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers 9, 689-714.
Tourpin, S., Gruau, G., Blais, S. and Fourcade, S., 1991. Resetting of REE, and Nd and Sr isotopes during carbonitization of a komatiite flow from Finland. Chemical geology, 90(1-2), pp.15-29.
Turner, S., Wilde, S., Wörner, G., Schaefer, B. and Lai, Y.J., 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nature Communications, 11(1), p.1241.
Valley, J.W., Peck, W.H., King, E.M. and Wilde, S.A., 2002. A cool early Earth. Geology, 30(4), pp.351-354.
Velikoslavinskii, S.D., Kotov, A.B., Salnikova, E.B., Kuznetsov, A.B., Kovach, V.P., Popov, N.V., Tolmacheva, E.V., Anisimova, I.V., Plotkina, Yu.V., 2018. New data on the age of the tonalite–trondhjemite orthogneisses of the Olekma Complex of the central part of the Chara–Olekma geoblock, Aldan Shield. Doklady Earth Sciences 482, 1265-1269.
Villa, I.M., Holden, N.E., Possolo, A., Ickert, R.B., Hibbert, D.B., Renne, P.R., 2020. IUPAC-IUGS recommendation on the half-lives of 147Sm and 146Sm. Geochimica et Cosmochimica Acta 285, 70-77.
Vogt, K., Dohmen, R. and Chakraborty, S., 2015. Fe-Mg diffusion in spinel: New experimental data and a point defect model. American Mineralogist, 100(10), pp.2112-2122.
Völkening, J., Walczyk, T. and Heumann, K.G., 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2), pp.147-159.
Walker, R.J., Shirey, S.B., Hanson, G.N., Rajamani, V. and Horan, M.F., 1989. Re-Os, Rb-Sr, and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. Geochimica et Cosmochimica Acta, 53(11), pp.3005-3013.
Walker, R.J., Prichard, H.M., Ishiwatari, A. and Pimentel, M., 2002a. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochimica et Cosmochimica Acta, 66(2), pp.329-345.
Walker, R.J., Horan, M.F., Morgan, J.W., Becker, H., Grossman, J.N. and Rubin, A.E., 2002b. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes. Geochimica et Cosmochimica Acta, 66(23), pp.4187-4201.
Walter, M. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, pp. 29 – 60.
Wang, Q., Wyman, D.A., Xu, J., Wan, Y., Li, C., Zi, F., Jiang, Z., Qiu, H., Chu, Z., Zhao, Z. and Dong, Y., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155, pp.473-490.
Whattam, S.A. and Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1), pp.38-63.
Winchester, J., Floyd, P., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459-469.
Windley, B.F., Kusky, T. and Polat, A., 2021. Onset of plate tectonics by the Eoarchean. Precambrian Research, 352, p.105980.
Workman, R.K. and Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2), pp.53-72.
Wyman, D.A., Ayer, J.A. and Devaney, J.R., 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1), pp.21-30.
Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q. and Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: partial melting of delaminated lower continental crust?. Geology, 30(12), pp.1111-1114.
Yuan, H., Gao, S., Rudnick, R.L., Jin, Z., Liu, Y., Puchtel, I.S., Walker, R.J. and Yu, R., 2007. Re–Os evidence for the age and origin of peridotites from the Dabie–Sulu ultrahigh pressure metamorphic belt, China. Chemical Geology, 236(3-4), pp.323-338.
Zhai, M., Yang, J., Fan, H., Miao, L. and Li, Y., 2002. A large-scale cluster of gold deposits and metallogenesis in the eastern North China craton. International Geology Review, 44(5), pp.458-476.
Zonenshain, L.P., 1990. Geology of the USSR: a plate-tectonic synthesis. Geodynamics series, 21, p.120. |