摘要(英) |
In 2020, the world was hit hard by the COVID-19 pandemic, which was a profound and far-reaching black swan event that severely impacted numerous industries. As the pandemic spread, it gradually affected not only East Asia but also the surrounding regions, Europe, the Americas, and various parts of the world. In such a challenging environment, how to approach investments became a thought-provoking question.
Investment analysis in the stock market primarily involves fundamental analysis, technical analysis, and stock stake holding analysis. This study focuses primarily on stock stake holding analysis, specifically utilizing the well-known next-day trading data from securities firms to explore the feasibility of predicting trading signals in the Taiwan stock market. Through the analysis of this data, we aim to gain insights into the future trends of individual stocks in the Taiwanese market, providing a reference for investment decisions.
The sample period for this study was from March 2, 2020, to July 1, 2020, covering a total of 83 trading days. Eight well-known next-day trading date was selected as the experimental group, while 15 non-well-known next-day trading date was chosen as the control group. Additionally, 16 listed biotech companies were selected as the basis for analysis. The objective of this study is to investigate the relationship between the subsequent impact of net buying and selling by well-known and non-well-known next-day trading data on stock price trends, as well as to examine whether there is a herding effect between the two groups.
The result revealed that the well-known next-day trading data from securities firms had a more significant impact on the subsequent stock price trends compared to the non-well-known next-day trading data. Furthermore, there is evidence of a herding effect between the two groups. The results indicated that higher buying and selling amounts in the well-known next-day trading data attracted more attention from investors and subsequently influenced the short-term stock price movements of individual stocks. |
參考文獻 |
中文文獻
1.江宏儒(2002),「股票市場從眾行為之探討:新興市場與已開發國家之比較」,國立高雄第一科技大學財務管理研究所碩士論文。
2.林雋琦(2001),「國內共同基金從眾現象及原因分析」,國立雲林科技大學企業管理碩士班論文。
3.林家豪(2011),「台灣股市從眾行為與展望理論之分析」,銘傳大學財務金融學系碩士論文。
4.林靜文(2021),「臺灣股市在疫情下的從眾行為-以SARS和COVID-19為例」,國立臺灣大學國際企業研究所碩士論文。
5.尚青林(2021),「哪裡有肉咬哪裡!當沖新世代,從虎尾幫到孝廉幫愈沖愈凶悍」,財訊雙周刊,638期,2021年7月21日。
6.尚青林(2022),「股海祕辛,拆解凱基台北短線大戶操作手法!神祕的券商分點,每每挑動台股敏感神經」,財訊雙周刊,670期,2022年10月20日。
7.徐中琦與林皇瑞(2008),「法人機構從眾行為之研究-台灣股市外資與自營商之比較」,《商管科技季刊》,9(2):251-276。
8.高惠娟(2014),「投資人從眾傾向與衝動性購買行為之探討-以加入股友社為例」,《嶺東學報》,35:73-101。
9.高碩圻(2015),「抓準隔日當沖主力,中信授訣」,工商時報,證券版,2015年6月26日。
10.馬琬淳(2022),「凱基台北哥重點伺候,裕隆漲勢兇猛、11月暴漲40% 」,經濟日報,股市版,2022年11月28日。
11.陳柏宏(2005),「避險者、投機者與散戶的從眾行為-以美國S&P500期貨市場為例」,國立中山大學財務管理學系研究所學術論文。
12.張幸惠(2012),「心理因素、處置效應與投資績效關係之探討」,《中華管理評論國際學報》,15(2):1-23。
13.許榮邦(2010),「台灣股票市場從眾行為與市場情緒之關聯性-以狀態空間模型驗證」,台北大學經濟學系碩士論文。
14.陳怡靜(2001),「臺灣地區總體經濟因素與股票和債券報酬關係之實證研究」,國立中山大學財務管理研究所碩士論文。
15.郭宜欣(2021),「散戶當心了,凱基哥黯淡,隔日沖明星隊接手」,工商時報,證券版,2021年8月24日。
16.黃玉娟與江宏儒(2003),「股票市場從眾行為之探討:新興市場與已開發國家之比較」,《交大管理學報》,23(2):119-146。
17.黃柏農(1998),「台灣股價與總體經濟變數關聯性之實證研究」,《證券市場發展季刊》,10(4):89-109。
18.黃毅(1989),「市場因素與股價關係之研究」,國立臺灣大學商學研究所碩士論文。
19.詹致齊(2014),「台灣股票市場從眾行為分析」,國立中正大學財務金融研究所碩士論文。
20.葉俞璘(2018),「突爆量成異常警訊! 專家:恐成隔日沖主力」,非凡新聞,金融版,2018年8月10日。
21.蔡智丞與李春安(2012),「投資人情緒、從眾與非從眾行為關聯性之研究」,《證券市場發展季刊》,24(3):141-182。
22.蔡宗倫(2021),「大戶隔日沖坑殺散戶?網曝韭菜壞習慣」,工商時報,證券版,2021年8月11日。
24.賴藝文與葉智丞(2014),「財經專業人士從眾推薦之研究」,《商管科技季刊》,9(1):1-25。
外文文獻
1.Chan, J.W., Cheng, and A., Khorana. (2002) “An Examination of Herding Behavior in Equity Markets: An International Perspective.” Journal of Banking & Finance, 24:1651-1679.
2.De Long, J.B., Shleifer, A., Summers, L.H., and Waldmann, R.J. (1990) “Positive Feedback Investment Strategies and Destabilizing Rational Speculation.” Journal of Finance, 45(2):379-395.
3.Hardouvelis, G.A. (1990) “Margin Requirements, Volatility, and The Transitory Component of Stock Prices.” American Economic Review, 80:736-762.
4.John, R.N. and Richard, W.S. (1999) “Herding and Feedback Trading by Institutional and Individual Investors. ”Journal of Finance, 54:2263-2295.
5.Keynes, J.M. (1936) “The General Theory of Employment, Interest, and Money.”
6.Kearny, C., and Daly, K. (1998) “The Causes of Stock Market Volatility in Australia.” Applied Financial Economics, 8(6):597-605.
7.Weng, P.S., Wu, M.H., Tsai, W.C., and Li, D.Y, (2021). “Effects of Investor Attention in China’s Commodity Futures Markets.” Journal of Futures Markets, 41(8):1315-1332.
8.Schwert, Willim, G. and Seguin, P.J. (1990) “Heteroscedasticity in Stock Returns.” Journal of Finance, 45:1129-1155.
9.Schwert, and William, G. (1990) “Stock Market Volatility.” Finance Analyst Journal, 46(3):23-34.
10.Shu, P.G., Chiu, S.B., and Yeh, H.C. (2009) “The Impacts of Individual Attributes and Stock Characteristics on Herding.” Review of Security and Futures Markets, 21:1-34.
11.Sill, D.K. (1993) “Predicting Stock-Market Volatility.” Business Review-Federal Reserve Bank of Philadelphia, 3:15-27.
12.Wooldridge, Jeffrey, M. (2015) Introductory Econometrics, 6e. Cengage Learning: 20 Channel Center Street Boston, MA 02210 USA.
13.Wang, D. (2008) “Herd Behavior Toward the Market Index: Evidence From 21 Financial Markets.” Working Paper, University of Navarra. |