參考文獻 |
1. Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. American Journal of Science, 268(3): 243-263.
2. Anbar, A.D., 2004. Molybdenum Stable Isotopes: Observations, Interpretations and Directions. Reviews in Mineralogy & Geochemistry, 55: 429-454.
3. Anbar, A.D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35(1): 717-746.
4. Archer, C., Vance, D., 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nature Geoscience, 1(9): 597-600.
5. Barling, J., Anbar, A.D., 2004. Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3): 315-329.
6. Barling, J., Arnold, G.L., Anbar, A.D., 2001. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth and Planetary Science Letters, 193(3): 447-457.
7. Bea, F., Pereira, M., Stroh, A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312.
8. Beaumont, C., Muñoz, J.A., Hamilton, J., Fullsack, P., 2000. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models. Journal of Geophysical Research: Solid Earth, 105(B4): 8121-8145.
9. Berner, R.A., 1991. A model for atmospheric CO 2 over Phanerozoic time. American Journal of Science, 291(4): 339-376.
10. Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci.;(United States), 283(7).
11. Blattmann, T.M. et al., 2019. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1): 2945.
12. Bluth, G.J.S., Kump, L.R., 1994. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10): 2341-2359.
13. Calmels, D. et al., 2011. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1): 48-58.
14. Chang, C.P., Angelier, J., Huang, C.Y., 2000. Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325(1): 43-62.
15. Chao, H.-C., You, C.-F., Wang, B.-S., Chung, C.-H., Huang, K.-F., 2011. Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones. Earth and Planetary Science Letters, 305(1): 32-44.
16. Chen, C.-T., Chan, Y.-C., Lu, C.-Y., Simoes, M., Beyssac, O., 2011. Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt. Terra Nova, 23(2): 85-91.
17. Chen, C.-Y., Willett, S.D., 2016. Graphical methods of river profile analysis to unravel drainage area change, uplift and erodibility contrasts in the Central Range of Taiwan. Earth Surface Processes and Landforms, 41(15): 2223-2238.
18. Chen, C., 2000. Geological map of Taiwan, scale 1: 500,000. Central Geological Survey, Taipei.
19. Chen, C.H., Chung, S.H., Huang, S.T., 1993. Carbonate minerals from the Central Range of Taiwan. Special publication of the Central Geological Survey, MOEA, 7: 51-77.
20. Chen, Z.-S., Hseu, Z.-Y., Tsai, C.-C., 2015. The soils of Taiwan. Springer.
21. Cheng, M., Li, C., Zhou, L., Xie, S., 2015. Mo marine geochemistry and reconstruction of ancient ocean redox states. Science China Earth Sciences, 58(12): 2123-2133.
22. Chetelat, B. et al., 2008. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72(17): 4254-4277.
23. Chu, H.-Y., You, C.-F., 2007. Dissolved constituents and Sr isotopes in river waters from a mountainous island – The Danshuei drainage system in northern Taiwan. Applied Geochemistry, 22(8): 1701-1714.
24. Chung, C.-H., You, C.-F., Chu, H.-Y., 2009. Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4): 433-443.
25. Clark, M.B., Fisher, D.M., Lu, C.Y., Chen, C.H., 1993. Kinematic analyses of the Hsüehshan Range, Taiwan: a large‐scale pop‐up structure. Tectonics, 12(1): 205-217.
26. Collier, R.W., 1985. Molybdenum in the Northeast Pacific Ocean. Limnology and Oceanography, 30(6): 1351-1354.
27. Dadson, S.J. et al., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967): 648-51.
28. Dahl, T.W. et al., 2010. The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochimica et Cosmochimica Acta, 74(1): 144-163.
29. Das, A., Chung, C.-H., You, C.-F., 2012. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12).
30. Deng, K., Wittmann, H., Yang, S., von Blanckenburg, F., 2021. The Upper Limit of Denudation Rate Measurement From Cosmogenic 10Be(Meteoric)/9Be Ratios in Taiwan. Journal of Geophysical Research: Earth Surface, 126(10): e2021JF006221.
31. Deshpande, T., Greenland, D., Quirk, J., 1968. Changes in soil properties associated with the removal of iron and aluminium oxides. Journal of Soil Science, 19(1): 108-122.
32. Dickson, A.J., Cohen, A.S., 2012. A molybdenum isotope record of Eocene Thermal Maximum 2: Implications for global ocean redox during the early Eocene. Paleoceanography, 27(3).
33. Dodson, M.H., 1963. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I - General first-order algebraic solutions. Journal of Scientific Instruments, 40(6): 289.
34. Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta, 58(2): 717-733.
35. Edmond, J., Palmer, M., Measures, C., Grant, B., Stallard, R., 1995. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochimica et Cosmochimica Acta, 59(16): 3301-3325.
36. Ekka, S.V., Liang, Y.-H., Huang, K.-F., Huang, J.-C., Lee, D.-C., 2023a. Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology. Chemical Geology, 620: 121349.
37. Ekka, S.V., Liang, Y.-H., Huang, K.-F., Lee, D.-C., 2023b. Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water, 15(10): 1873.
38. Emberson, R., Hovius, N., Galy, A., Marc, O., 2016. Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3): 727-742.
39. Emerson, S.R., Huested, S.S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3): 177-196.
40. Etemad-Shahidi, A., Shahkolahi, A., Liu, W.-C., 2010. Modeling of Hydrodynamics and Cohesive Sediment Processes in an Estuarine System: Study Case in Danshui River. Environmental Modeling & Assessment, 15(4): 261-271.
41. Ewart, A., Griffin, W., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4): 251-284.
42. Feng, M. et al., 2022. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. Journal of Hydrology, 604: 127209.
43. France-Lanord, C., Derry, L.A., 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655): 65-67.
44. Gaillardet, J., Dupré, B., Louvat, P., Allegre, C., 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4): 3-30.
45. Garzanti, E. et al., 2013. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547-580.
46. Garzanti, E., Resentini, A., 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81-95.
47. Goldberg, S., 1989. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: a review. Communications in Soil Science and Plant Analysis, 20(11-12): 1181-1207.
48. Goldberg, S., Forster, H.S., Godfrey, C.L., 1996. Molybdenum Adsorption on Oxides, Clay Minerals, and Soils. Soil Science Society of America Journal, 60(2): 425-432.
49. Goldberg, T., Archer, C., Vance, D., Poulton, S.W., 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta, 73: 6502-6516.
50. Goldberg, T. et al., 2013. Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. Journal of Analytical Atomic Spectrometry, 28(5): 724-735.
51. Greaney, A.T. et al., 2018. Geochemistry of molybdenum in the continental crust. Geochimica et Cosmochimica Acta, 238: 36-54.
52. Greber, N.D., Siebert, C., Nägler, T.F., Pettke, T., 2012. δ98/95Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostandards and Geoanalytical Research, 36(3): 291-300.
53. Gurumurthy, G.P., Tripti, M., Riotte, J., Prakyath, R., Balakrishna, K., 2017. Impact of water-particle interactions on molybdenum budget in humid tropical rivers and estuaries: insights from Nethravati, Gurupur and Mandovi river systems. Chemical Geology, 450: 44-58.
54. Harkness, J.S. et al., 2017. Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States. Environmental Science & Technology, 51(21): 12190-12199.
55. Hartshorn, K., Hovius, N., Dade, W.B., Slingerland, R.L., 2002. Climate-driven bedrock incision in an active mountain belt. Science, 297(5589): 2036-8.
56. Helz, G.R., Vorlicek, T.P., 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology, 509: 178-193.
57. Hemingway, J.D. et al., 2018. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science, 360(6385): 209-212.
58. Hilton, R.G., Gaillardet, J., Calmels, D., Birck, J.-L., 2014. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters, 403: 27-36.
59. Ho, C., 1986a. Taiwan Geology. Central Geological Survey, Ministry of Economic Affairs, Taipei (in Chinese).
60. Ho, C., 1988. An introduction to the geology of Taiwan. Central Geological Survey Ministry of Economic Affairs Taiwan.
61. Ho, C.S., 1986b. A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1): 1-16.
62. Horan, K. et al., 2020. Unravelling the controls on the molybdenum isotope ratios of river waters. Geochemical Perspectives Letters, 13: 1-6.
63. Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4): 437-451.
64. Hovius, N. et al., 2011. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 304(3): 347-355.
65. Huang, M.-H., Bürgmann, R., Hu, J.-C., 2016. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692: 252-264.
66. Huang, X., Sillanpää, M., Gjessing, E.T., Vogt, R.D., 2009. Water quality in the Tibetan Plateau: major ions and trace elements in the headwaters of four major Asian rivers. Science of Total Environment, 407(24): 6242-54.
67. Jacobson, A.D., Blum, J.D., Chamberlain, C.P., Craw, D., Koons, P.O., 2003. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67(1): 29-46.
68. Jacobson, A.D., Blum, J.D., Walter, L.M., 2002. Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochimica et Cosmochimica Acta, 66(19): 3417-3429.
69. Jiann, K.-T., Wen, L.-S., Santschi, P.H., 2005. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry, 96(3-4): 293-313.
70. Kao, S.J., Milliman, J.D., 2008. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. The Journal of Geology, 116(5): 431-448.
71. Kashiwabara, T., Takahashi, Y., Tanimizu, M., Usui, A., 2011. Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochimica et Cosmochimica Acta, 75(19): 5762-5784.
72. Kendall, B., Creaser, R.A., Gordon, G.W., Anbar, A.D., 2009. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochimica et Cosmochimica Acta, 73: 2534-2558.
73. Kendall, B., Dahl, T.W., Anbar, A.D., 2017. The Stable Isotope Geochemistry of Molybdenum. Reviews in Mineralogy and Geochemistry, 82(1): 683-732.
74. King, E.K., Perakis, S.S., Pett-Ridge, J.C., 2018. Molybdenum isotope fractionation during adsorption to organic matter. Geochimica et Cosmochimica Acta, 222: 584-598.
75. King, E.K., Thompson, A., Chadwick, O.A., Pett-Ridge, J.C., 2016. Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect. Chemical Geology, 445: 54-67.
76. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15: 259-263.
77. Krasilnikov, P., Arnold, R., Marti, J.-J.I., Shoba, S., 2009. A handbook of soil terminology, correlation and classification. Earthscan.
78. Laeter, J.R.d. et al., 2003. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75(6): 683-800.
79. Lan, C.Y. et al., 1991. Geochemical and isotopic study of gneiss-associated metabasites at the Central Range, Taiwan. Proc. Geol. Sot. China, 34: 233-266.
80. Larsen, L.M., 1979. Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12(4): 303-315.
81. Laskar, A.H., Yui, T.-F., Liang, M.-C., 2016. Clumped isotope composition of marbles from the Backbone Range of Taiwan. Terra Nova, 28(4): 265-270.
82. Lee, T.-Y. et al., 2015. Magnified Sediment Export of Small Mountainous Rivers in Taiwan: Chain Reactions from Increased Rainfall Intensity under Global Warming. PLOS ONE, 10(9): e0138283.
83. Lee, T.Y. et al., 2014. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences, 11(19): 5307-5321.
84. Lee, W.-S. et al., 2020. Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water, 12(11): 2981.
85. Li, C. et al., 2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57(6): 673-681.
86. Li, Y.-H., 1976. Denudation of Taiwan island since the Pliocene epoch. Geology, 4(2): 105-107.
87. Li, Y.-H., Chen, C., Hung, J.-J., 1997. Aquatic chemistry of lakes and reservoirs in Taiwan. TAO, 8(4): 405.
88. Liang, Y.-H. et al., 2017. Molybdenum isotope fractionation in the mantle. Geochimica et Cosmochimica Acta, 199: 91-111.
89. Liermann, L.J. et al., 2011. Extent and isotopic composition of Fe and Mo release from two Pennsylvania shales in the presence of organic ligands and bacteria. Chemical Geology, 281(3): 167-180.
90. Lin, H.J. et al., 2007. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Pollution Bulletin, 54(11): 1789-800.
91. Liu, C.C., Yu, S.B., 1990. Vertical Crustal Movements in Eastern Taiwan and Their Tectonic Implications. Tectonophysics, 183(1-4): 111-119.
92. Liu, Y.-C. et al., 2012. Boron sources and transport mechanisms in river waters collected from southwestern Taiwan: Isotopic evidence. Journal of Asian Earth Sciences, 58: 16-23.
93. Liu, Z. et al., 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255(3): 149-155.
94. Longman, J., Struve, T., Pahnke, K., 2022. Spatial and Temporal Trends in Mineral Dust Provenance in the South Pacific—Evidence From Mixing Models. Paleoceanography and Paleoclimatology, 37(2): e2021PA004356.
95. Longman, J. et al., 2018. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model. Scientific reports, 8(1): 6154.
96. Lou, J.-Y. et al., 2014. Comparison of subtropical surface water chemistry between the large Pearl River in China and small mountainous rivers in Taiwan. Journal of Asian Earth Sciences, 79: 182-190.
97. Lupker, M. et al., 2011. A Rouse‐based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research: Earth Surface, 116(F4).
98. Maher, K., Chamberlain, C.P., 2014. Hydrologic Regulation of Chemical Weathering and the Geologic Carbon Cycle. Science, 343(6178): 1502-1504.
99. Malinovsky, D., Baxter, D.C., Rodushkin, I., 2007. Ion-Specific Isotopic Fractionation of Molybdenum during Diffusion in Aqueous Solutions. Environmental Science & Technology, 41(5): 1596-1600.
100. Marks, J.A., Perakis, S.S., King, E.K., Pett-Ridge, J., 2015. Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry, 125(2): 167-183.
101. McManus, J., Nägler, T.F., Siebert, C., Wheat, C.G., Hammond, D.E., 2002. Oceanic molybdenum isotope fractionation: Diagenesis and hydrothermal ridge-flank alteration. Geochemistry, Geophysics, Geosystems, 3(12): 1-9.
102. Meybeck, M., 1983. Atmospheric inputs and river transport of dissolved substances. Dissolved loads of rivers and surface water quantity/quality relationships: 173-192.
103. Meyer, K.J., Carey, A.E., You, C.-F., 2017. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochimica et Cosmochimica Acta, 215: 404-420.
104. Miller, C.A., Peucker-Ehrenbrink, B., Walker, B.D., Marcantonio, F., 2011. Re-assessing the surface cycling of molybdenum and rhenium. Geochimica et Cosmochimica Acta, 75(22): 7146-7179.
105. Milliman, J.D., Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 100(5): 525-544.
106. Montgomery, D.R., Huang, M.Y.F., Huang, A.Y.L., 2014. Regional soil erosion in response to land use and increased typhoon frequency and intensity, Taiwan. Quaternary Research, 81(1): 15-20.
107. Moon, S., Chamberlain, C.P., Hilley, G.E., 2014. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochimica et Cosmochimica Acta, 134: 257-274.
108. Nägler, T.F. et al., 2014. Proposal for an international molybdenum isotope measurement standard and data representation. Geostandards and Geoanalytical Research, 38(2): 149-151.
109. Nayak, K., Garzanti, E., Lin, A.T.-S., Castelltort, S., 2022. Taiwan river muds from source to sink: Provenance control, inherited weathering, and offshore dispersal pathways. Sedimentary Geology, 438: 106199.
110. Nayak, K. et al., 2021. Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 814: 228974.
111. Neely, R.A. et al., 2018. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland. Earth and Planetary Science Letters, 486: 108-118.
112. Négrel, P., Allègre, C.J., Dupré, B., Lewin, E., 1993. Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth and Planetary Science Letters, 120(1): 59-76.
113. Neubert, N. et al., 2011. The molybdenum isotopic composition in river water: Constraints from small catchments. Earth and Planetary Science Letters, 304(1): 180-190.
114. Okamoto, K., 1979. GEOCHEMICAL STUDY ON MAGMATIC DIFFERENTIATION OF ASAMA VOLCANO, CENTRAL JAPAN. The Journal of the Geological Society of Japan, 85(8): 525-535.
115. Parnell, A.C. et al., 2013. Bayesian stable isotope mixing models. Environmetrics, 24(6): 387-399.
116. Pearce, C.R., Burton, K.W., von Strandmann, P.A.E.P., James, R.H., Gíslason, S.R., 2010. Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth and Planetary Science Letters, 295(1): 104-114.
117. Pi, J.-L., You, C.-F., Horng, C.-S., Yang, H.-J., Chen, C.-J., 2019. The redistribution of B concentration and its isotopes during low-grade metamorphism: Observations in metapelites from the Central Range, Taiwan. Chemical Geology, 520: 1-10.
118. Plimer, I.R., Elliott, S.M., 1979. The use of Rb/Sr ratios as a guide to mineralization. Journal of Geochemical Exploration, 12: 21-34.
119. Pogge von Strandmann, P.A.E. et al., 2006. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters, 251(1): 134-147.
120. Pogge von Strandmann, P.A.E. et al., 2008. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters, 276(1): 187-197.
121. Poulson, R.L., Siebert, C., McManus, J., Berelson, W.M., 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617-620.
122. Putri, M., Lou, C.-H., Syai’in, M., Ou, S.-H., Wang, Y.-C., 2018. Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water, 10(10).
123. Rahaman, W., Goswami, V., Singh, S.K., Rai, V.K., 2014. Molybdenum isotopes in two Indian estuaries: Mixing characteristics and input to oceans. Geochimica et Cosmochimica Acta, 141: 407-422.
124. Rai, S.K., Singh, S.K., Krishnaswami, S., 2010. Chemical weathering in the plain and peninsular sub-basins of the Ganga: Impact on major ion chemistry and elemental fluxes. Geochimica et Cosmochimica Acta, 74(8): 2340-2355.
125. Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359(6391): 117-122.
126. Rehkämper, M., Schönbächler, M., Stirling, C.H., 2001. Multiple Collector ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards Newsletter, 25(1): 23-40.
127. Resentini, A., Goren, L., Castelltort, S., Garzanti, E., 2017. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7): 1430-1454.
128. Revels, B.N., Rickli, J., Moura, C.A.V., Vance, D., 2021. The riverine flux of molybdenum and its isotopes to the ocean: Weathering processes and dissolved-particulate partitioning in the Amazon basin. Earth and Planetary Science Letters, 559: 116773.
129. Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2003. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica et Cosmochimica Acta, 67(22): 4411-4427.
130. Rudge, J.F., Reynolds, B.C., Bourdon, B., 2009. The double spike toolbox. Chemical Geology, 265(3): 420-431.
131. Rudnick, R.L., Gao, S., 2014. 4.1 - Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford, pp. 1-51.
132. Sarmiento, J.L., Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton university press, 503 pp.
133. Schauble, E.A., 2004. Applying stable isotope fractionation theory to new systems. Reviews in mineralogy and geochemistry, 55(1): 65-111.
134. Selvaraj, K., Chen, C.-T.A., 2006. Moderate chemical weathering of subtropical Taiwan: constraints from solid-phase geochemistry of sediments and sedimentary rocks. The Journal of Geology, 114(1): 101-116.
135. Seno, T., Stein, S., Gripp, A.E., 1993. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941-17948.
136. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 32(5): 751-767.
137. Shao, Y., Klose, M., Wyrwoll, K.-H., 2013. Recent global dust trend and connections to climate forcing. Journal of Geophysical Research: Atmospheres, 118(19): 11,107-11,118.
138. Shiau, J.-T., Wu, P.-S., 2021. Nonstationary Distributional Changes of Annual Rainfall Indices in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 57(3): 435-450.
139. Shih, Y.-T., Lee, T.-Y., Huang, J.-C., Kao, S.-J., Chang, 2016. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed. Science of The Total Environment, 560-561: 1-11.
140. Shyu, J.B.H., Sieh, K., Chen, Y.-G., Liu, C.-S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
141. Siebert, C., Nägler, T.F., Kramers, J.D., 2001. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry, Geophysics, Geosystems, 2(7).
142. Siebert, C., Nägler, T.F., von Blanckenburg, F., Kramers, J.D., 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1-2): 159-171.
143. Siebert, C. et al., 2015. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs. Geochimica et Cosmochimica Acta, 162: 1-24.
144. Skierszkan, E. et al., 2017. Molybdenum (Mo) stable isotopic variations as indicators of Mo attenuation in mine waste-rock drainage. Applied Geochemistry, 87: 71-83.
145. Stallard, R., Edmond, J., 1981. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. Journal of Geophysical Research: Oceans, 86(C10): 9844-9858.
146. Stallard, R.F., Edmond, J.M., 1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88(C14): 9671-9688.
147. Stock, B.C. et al., 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6: e5096.
148. Stock, B.C., Semmens, B.X., 2016. Unifying error structures in commonly used biotracer mixing models. Ecology, 97(10): 2562-2569.
149. Su, N. et al., 2021. Radiogenic and stable Sr isotopes constrain weathering processes in rapidly eroding Taiwan catchments. Earth and Planetary Science Letters, 576: 117235.
150. Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6: 21-33.
151. Tanaka, K., Watanabe, N., 2015. Size distribution of alkali elements in riverbed sediment and its relevance to fractionation of alkali elements during chemical weathering. Chemical Geology, 411: 12-18.
152. Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell, Oxford, 349.
153. Teng, F.-Z., Dauphas, N., Watkins, J.M., 2017. Non-Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26.
154. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1): 57-76.
155. Thoby, M. et al., 2019. Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology, 47(6): 559-562.
156. Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A., 1993. A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 39(133): 573-581.
157. Tsai, K.-S., Chang, Y.-M., Kao, J.C., Lin, K.-L., 2016. Groundwater molybdenum from emerging industries in Taiwan. Bulletin of environmental contamination and toxicology, 96: 102-106.
158. Tsutsumi, Y., Lee, C., Shen, J., Lan, C., Yokoyama, K., 2006. Stability and Dissolution of heavy minerals in the Neogene-Pleistocene Sandstones from Western Foothills, Taiwan. Memoirs Natl. Sci. Museum (Tokyo), 44: 195-204.
159. Urey, H.C., Korff, S.A., 1952. The Planets: Their Origin and Development. Physics Today, 5(8): 12-12.
160. Voegelin, A.R., Nägler, T.F., Beukes, N.J., Lacassie, J.P., 2010. Molybdenum isotopes in late Archean carbonate rocks: Implications for early Earth oxygenation. Precambrian Research, 182(1-2): 70-82.
161. Voegelin, A.R. et al., 2012. The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments. Geochimica et Cosmochimica Acta, 86: 150-165.
162. Voegelin, A.R., Pettke, T., Greber, N.D., von Niederhäusern, B., Nägler, T.F., 2014. Magma differentiation fractionates Mo isotope ratios: Evidence from the Kos Plateau Tuff (Aegean Arc). Lithos, 190-191: 440-448.
163. Vorlicek, T.P., Kahn, M.D., Kasuya, Y., Helz, G.R., 2004. Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides 1 1Associate editor: M. Goldhaber. Geochimica et Cosmochimica Acta, 68(3): 547-556.
164. Wang, R.-M., You, C.-F., Chu, H.-Y., Hung, J.-J., 2009. Seasonal variability of dissolved major and trace elements in the Gaoping (Kaoping) River Estuary, Southwestern Taiwan. Journal of Marine Systems, 76(4): 444-456.
165. Wang, Z. et al., 2015. Chemical weathering controls on variations in the molybdenum isotopic composition of river water: Evidence from large rivers in China. Chemical Geology, 410: 201-212.
166. Wang, Z. et al., 2018. Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite. Geochimica et Cosmochimica Acta, 226: 1-17.
167. Wang, Z. et al., 2020. Effect of Fe–Ti oxides on Mo isotopic variations in lateritic weathering profiles of basalt. Geochimica et Cosmochimica Acta, 286: 380-403.
168. Wasylenki, L.E., Rolfe, B.A., Weeks, C.L., Spiro, T.G., Anbar, A.D., 2008. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72(24): 5997-6005.
169. Wen, H., Carignan, J., Cloquet, C., Zhu, X., Zhang, Y., 2010. Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: Proposition for delta zero and secondary references. Journal of Analytical Atomic Spectrometry, 25(5): 716-721.
170. West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1): 211-228.
171. White, A.F., Blum, A.E., 1995. Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747.
172. White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S., Clow, D.W., 1999. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, 63(13-14): 1939-1953.
173. Wiederhold, J.G., 2015. Metal Stable Isotope Signatures as Tracers in Environmental Geochemistry. Environmental Science & Technology, 49(5): 2606-2624.
174. Willbold, M., Elliott, T., 2017. Molybdenum isotope variations in magmatic rocks. Chemical Geology, 449: 253-268.
175. WRA, 2003. Water Resource Agency Hydrological Yearbook. In: E-book (Editor). Water Resource Agency, Ministry of Economic Affair, Taiwan, ROC, Taipei.
176. Wu, J.-C., Yang, K.-M., Chen, Y.-R., Chi, W.-R., Closson, D., 2011. Tectonic implications of stratigraphy architecture in distal part of foreland basin, southwestern Taiwan. Tectonics: Rijeka, Croatia, InTech: 171-198.
177. Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., 2013. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chemical Geology, 356: 141-150.
178. Xu, L. et al., 2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment. Chemical Geology, 318-319: 45-59.
179. Yang, J. et al., 2017. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica et Cosmochimica Acta, 205: 168-186.
180. Yen, T., 1963. The metamorphic belts within the Tananao Schist terrain of Taiwan. Geological Society of China.
181. Yokoyama, K. et al., 2007. Provenance study of tertiary sandstones from the Western foothills and Hsuehshan Range, Taiwan. Bulletin of the National Museum of Nature and Science Serial C, 33: 7-26.
182. Yoshimura, K. et al., 2001. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chemical Geology, 177(3): 415-430.
183. You, C.-F., Gieskes, J.M., Lee, T., Yui, T.-F., Chen, H.-W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5): 695-707.
184. Yui, T.-F., 2005. Isotopic Composition of Carbonaceous Material in Metamorphic Rocks from the Mountain Belt of Taiwan. International Geology Review, 47(3): 310-325.
185. Yui, T. et al., 2009. Late Triassic–Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China–evidence from zircon SHRIMP dating. International Geology Review, 51(4): 304-328.
186. Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1-2): 97-122.
187. Zeng, J., Han, G., Zhu, J.-M., 2019. Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China. Water, 11(5): 1076. |