博碩士論文 110428038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.145.85.74
姓名 陳彥廷(Yen-Ting Chen)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 台灣股市價量關係之分量迴歸研究-由因子之角度探討
相關論文
★ 國內股票型共同基金異常報酬之特徵研究★ 台灣境外高收益債券型基金績效分析
★ 財富管理客戶選擇銀行之因素探討★ 境外匯回專法實施前後境外資金解決方案比較-以個案分析為例
★ 利用隨機優勢方法探究商品指數之投資績效★ 承銷關係是否會影響未來承銷業務?
★ 併購動能:以台灣市場為例★ 機構法人對股票報酬與公司價值之影響
★ 投資者情緒與期貨價格關聯性★ 避險基金指數是否能夠提供風險分散效果?- 利用均異擴張檢定
★ Model-Free隱含波動度價差之遠期資訊★ 公開市場購回股票之研究
★ Modeling Long Run Risk with Macroeconomic Fundamentals★ Exploration of Jumps and Cojumps in Financial Markets
★ 社會責任指數與環境、社會及公司治理之關聯性分析-以FTSE4Good系列指數為例★ 運用檢定資產價格泡沫模型建構動態財務危機預警之驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-13以後開放)
摘要(中) 以往有關於價量關係的文獻,大多數都只針對價格和交易量這兩個變數進行探 討,鮮少在探討價量關係時控制其他影響。此外,資產定價的研究一直以來都是學 術上的重點議題,各個學者致力於尋找出與資產價格有關的變數。因此,本文嘗試 收集這些已被證實與股票報酬有關的變數,接著結合機器學習的方式,來對這些變 數進行降維。 本文收集總共 46 個變數,其樣本期間為 2002 年 1 月到 2022年 12 月, 將該樣本期間區分為樣本內及樣本外,其中樣本內期間為2002 年 1 月至 2006 年 12月,而樣本外期間則為 2007 年 1 月至 2022 年 12 月。首先,我們藉由 不同的降維技術 (PCA、PLS和PQR) 來對變數進行降維,接著對報酬進行樣本外 預測,並且比較這三個模型的預測力。 最後,本文參考 Stock and Watson (2002) 的建議,將46 個變數進行分類接著 進行預測,結果顯示 PLS 在預測報酬時,其績效皆最優,PQR(0.5) 則次之,故最 後利用 PLS 和 PQR(0.5) 來對具有預測力的類別萃取因子。接著,將上述因子納 入到分量迴歸模型裡來觀察樣本外期間的價量關係,將迴歸結果與未控制因子的迴 歸結果進行比較,結果發現這些因子確實會影響價量關係。此外,我們也利用這些 因子來過濾報酬率,接著藉由 Granger 因果檢定來觀察過濾後的報酬率和交易量 之間的因果關係。
摘要(英) In the past, most of the literature on the price-volume relationship has focused on two variables, namely price and volume, and seldom controlled for other effects when investigating the price-volume relationship. In addition, the study of asset pricing has always been an important academic topic, and various scholars have tried to find out the variables related to asset prices. Therefore, this paper tries to collect these variables that have been proven to be related to stock returns, and then combine them with machine learning to reduct the dimension of these variables. We collect a total of 46 variables with a sample period from January 2002 to December 2022 and divide the sample period into in-sample and out-of-sample periods, where the in-sample period is from January 2002 to December 2006 and the out-of sample period is from January 2007 to December 2022. First, we reduct the dimension of these variables by supervised/unsupervised dimensionality reduction methods (PCA, PLS, and PQR), and then make out-of-sample predictions of stock returns and compare the predictability of the three models. Finally, this paper refers to the suggestion of Stock and Watson′s (2002) to categorize the 46 variables and then make predictions for stock returns. The result shows that PLS has the best predictability in stock returns, while PQR(0.5) has the second best predictability. Therefore, we finally used PLS and PQR(0.5) to extract the factors for all categories. Next, the above factors are incorporated into the quantile regression model to observe the price-volume relationship during the out-of-sample period, and the regression results are compared to those without controlling for any factors, the result shows that these factors affect the price-volume relationship. In addition, we also use these factors to filter stock returns, and then observe the causality between the filtered returns and the trading volume via Granger causality test.
關鍵字(中) ★ 價量關係
★ 分量迴歸
★ Granger 因果檢定
★ 機器學習
★ 降維技術
關鍵字(英)
論文目次 目錄
摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
一.緒論 1
二.價量關係的理論與文獻探討 4
2.1 價量關係之理論模型 4
2.1.1 Clark (1973) 混合分配模型 4
2.1.2 Epps and Epps (1976) 混合分配模型 4
2.1.3 Copeland (1976) 的序列資訊抵達模型 4
2.1.4 Jennings et al. (1981) 的序列資訊抵達模型 5
2.2 價量關係之實證文獻 5
三.資料與研究方法 9
3.1 資料來源 9
3.2 研究方法 13
3.2.1 ADF檢定 (Augmented Dickey and Fuller Test) 13
3.2.2 分量迴歸 15
3.2.3 Granger因果檢定 (Granger Causality test) 16
3.2.4 降維技術 17
3.2.5 預測技術 19
3.2.6 模型解釋能力之衡量方式 19
3.2.7 關鍵類別的績效衡量準則 20
四.實證分析 21 4.1 全樣本分析 21
4.2 樣本外分析 22
4-2-1 不區分類別 23
4.2.2 區分類別 24
4.2.3 關鍵類別 25
4.2.4 單一類別對於報酬率預測的Marginal Pseudo R2 26
4.3 價量關係之 Granger 因果關係檢定 27
4.4 價量關係之分量迴歸探討 29
五.結論 37
附錄 39
附表 1 基本統計量與 ADF 檢定 39
中文參考文獻 40
英文參考文獻 40
參考文獻 中文參考文獻
徐婉容 (2020), 認定與預測臺灣股市大跌, 中央銀行季刊, 42(2),37-72.
莊家彰, & 管中閔. (2005), 台灣與美國股市價量關係的分量迴歸分析,經濟論文, 33(4), 379-404.
劉映興與陳家彬 (2002).臺灣股票市場交易值、交易量與發行量加權股價指數關係 之實證研究光譜分析之應用,農業經濟半年刊, (72), 69-91.
許和鈞、劉永欽 (1996),台灣地區股票市場價量之線性與非線性Granger因果關係 之研究,證券市場發展季刊, 8(4), 23-49。
劉永欽 (1996),臺灣股票市場價量之線性與非線性Granger因果關係之研究,交通大學管理科學研究所未出版碩士論文.

英文參考文獻
Baker, M., & Wurgler, J. (2006). Investor Sentiment and Cross-Section of Stock Returns. Journal of Finance, 61, 1645-1680.
Barberis, N., Shleifer, A., and Vishny, R., 1998, A model of investor sentiment. Journal of Financial Economics, 49(3), 307-343.
Banz, R. W. (1981). The Relationship between Return and Market Value of Common Stocks. Journal of Financial Economics, 9(1), 3-18.
Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Economics, 18(2), 373-399.
Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Economics, 18(2), 373-399.
Campbell, J. Y., & Shiller, R. J. (1988). The dividend-price ratio and expectations of future dividends and discount factors. Review of Financial Studies, 1(3), 195-228.
Chen, G. M., Firth, M. and Rui, O. M. (2001), The Dynamic Relation Between Stock Returns, Trading Volume, and Volatility. Financial Review, 38, 153- 174.
Clark, P. K. (1973). A Subordinated Stochastic Process Model with Finite Variance for Speculative Price. Econometrica, 41, 135-155.
Copeland, T. E. (1976). A Model of Asset Trading under the Assumption of Sequential Information Arrival. Journal of Finance, 4, 1149-1168.
De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? Journal of Finance, 40(3), 793-805.
Delong, B., Shleifer, A., Summers, L., and Waldmann, R. J. (1990). Noise Trader Risk in Financial Markets. Journal of Portfolio Economy, 98, 703-738.
Epps, T. and Epps, M. (1976). The Stochastic Dependence of Security Price Changes and Transaction Volume: Implications for the Mixture-of-Distributions Hypothesis. Econometrica, 44, 305-321.
Fama, E.F. (1975). Shrot-Term Interest Rates as Predictors of Inflation. American Economic Review, 65(3), 269-282.
Fama, E.F. (1981). Stock Returns, Real Activity, Inflation and Money. American Economic Review, 71, 545-565.
Fama, E.F., and Kenneth R. French (1992). The Cross-section of Expected Stock Returns. Journal of Finance, 47(2), 427-465.
Fama, E.F., and MacBeth, J. D. (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy, 81(3), 607-636.
Flannery, M. J., & Protopapadakis, A. A. (2002). Macroeconomic factors do influence aggregate stock returns. Review of Financial Studies, 15(3), 751-782.
Gallant, A. R., Rossi, P. E., and Tauchen, G (1992). Stock Prices and Volume. Review of Financial Studies, 50, 199-242.
Godfrey, M. D., C. W. J. Granger, and O. Morgenstern (1964). The Random Walk Hypothesis of Stock Market Behavior. Kyklos, 17, 1-30.
Granger, C. W. J., and Morgenstern, O. (1963). Spectral Analysis of New York Stock Market Prices. Kyklos, 16, 1-27.
Giglio, S., Kelly, B., & Pruitt, S. (2016). Systemic risk and the macroeconomy: An empirical evaluation. Journal of Financial Economics, 119(3), 457 471.
Green, J., Hand, J. R., & Zhang, X. F. (2017). The characteristics that provide independent information about average US monthly stock returns. Review of Financial Studies, 30(12), 4389-4436.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223-2273.
Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics, 222(1), 429-450.
Hiemstra, C., and J. D. Jones (1994).Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation. Journal of Finance, 49, 1639-1664. Jain, P. and Joh, G. (1988). The Dependence between Hourly Prices and Trading Volume. Journal of Financial and Quantitative Analysis, 23, 269-284.
Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. Journal of
Finance, 45(3), 881-898.
Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers:
Implications for stock market efficiency. Journal of Finance, 48(1), 65-91.
Jennings, R. H., Starks, L. T., and Fellingham, J. C. (1981). An Equilibrium Model of
Asset Trading with Sequential Information Arrival. Journal of Finance, 36, 143-161.
Karpoff, J. K. (1987) The Relation between Price Changes and Trading Volume: A
Survey. Journal of Financial and Quantitative Analysis, 22,109-126.
Kelly, B., & Pruitt, S. (2015). The three-pass regression filter: A new approach to
forecasting using many predictors. Journal of Econometrics, 186(2), 294-316.
Kemal Saatcioglu and Laura T. Starks. (1988). The stock price-volume relationship in
emerging stock markets: the case of Latin America. International Journal of
Forecasting, 14(2), 215-225.
Koenker, R., and Bassett Jr, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
Koenker, R. and K. F. Hallock (2001). Quantile Regression. Journal of Economic
Perspectives, 15, 143-156.
Kraus, Alan & Stoll, Hans R, (1972). Price Impacts of Block Trading on the New York Stock Exchange. Journal of Finance, American Finance Association, vol. 27(3), 569-588.
Kryzanowski, L., Galler, M., & Wright, D. (1993). Using artificial neural networks to pick stocks. Financial Analysts Journal, 49, 21–27.
Kim, TaeHyuk, and Aejin Ha (2010). Investor sentiment and market anomalies, 23rd
Australasian Finance and Banking Conference 2010 Paper.
Kuan, C., & Lim, T. (1994). Forecasting exchange rates using feed forward and recurrent neural networks. Journal of Applied Econometrics, 10, 347–364.
Lamoureux, C. and Lastraps, W. (1991). Heteroskedasticity in Stock Return Data: Volume versus GARCH effect. Journal of Finance, 45, 221-229.
Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial
Economics, 74(2), 209-235.
Lintner, J., (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics, 47(1), 13-37.
Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting the equity risk
premium: the role of technical indicators. Management Science, 60(7), 1772-1791.
Olson, D. and Mossman, C. (2003). Neural network forecasts of Canadian stock returns using accounting ratios. International Journal of Forecasting 19(3); 453-465.
Osborne, M. F. M. (1959). Brownian Motion in the Stock Market. Operations Research, 7, 145-173.
Pontiff, J. and Schall, L. D. (1998). Book-to-market ratios as predictors of market returns. Journal of Financial Economics, 49(2), 141-160
Refenes, A., Zapranis, A., & Francis, G. (1994). Stock performance modeling using neural networks: a comparative study with regression models. Neural Networks, 7, 375-388.
Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion
indexes. Journal of Business & Economic Statistics, 20(2), 147-162.
Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of
equity premium prediction. Review of Financial Studies, 21(4), 1455-1508.
Zhong, X. and Enke, D. L. (2017). Forecasting Daily Stock Market Return using
Dimensionality Reduction. Expert Systems with Applications, vol. 67, pp. 126-139.
Ying, C. C. (1966). Stock Market Prices and Volumes of Sales. Econometrica, 34, 676
685.
指導教授 葉錦徽(Jin‑Huei Yeh) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明