參考文獻 |
[1] AIAA (American Institute of Aeronautics and Astronautics). Airborne Early Warning Association, (2012). Radar frequency bands. Retrieved from website: http://www.aewa.org/Library/
[2] Andreassen, Ø., P. Ø. Hvidsten, D. C. Fritts, and S. Arendt (1998), Vorticity dynamics in a breaking gravity wave, 1, Initial instability evolution, J. Fluid Mech., 367, 27-46.
[3] Andrioli, V. F., P. P. Batista, J. Xu, G. Yang, W. Chi, and L. Zhengkuan (2017), Strong temperature gradients and vertical wind shear on MLT region associated to instability source at 23oS, J. Geophys. Res. Space Physics, 122, 4500-4511, doi:10.1002/2016JA023638.
[4] Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmidt, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio oc- cultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.
[5] Axford, W.I. (1963), The formation and vertical movement of dense ionized layers in the ionosphere due to neutral windshears. J.Geophys.Res.68(3), 769- 779.117
[6] Bowles, K. L., B. B. Balsley, and Ronert Cohen (1963), Field-Aligned E-Region Irregularities Identified with Acoustic Plasma Waves, J. Geophys. Res., VOL. 58, No. 9.
[7] Calvert, W., Warnock, J.M. (1969), Ionospheric irregularities observed by top- side sounders. Proc. IEEE 57 (6), 1019-1025.
[8] Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, and
J. A. Smith (2016), Lidar observations of persistent gravity waves with periods of 3-10 h in the Antarctic middle and upper atmosphere at Mc- Murdo (77.83oS, 166.67oE), J. Geophys. Res. Space Physics, 121, 1483-1502, doi:10.1002/2015JA022127.
[9] Chen, C.L., Pan, C.J., Rottger, J., Ananda, V.K. (2005), Three dimen- sional tracking of midlatitude quasi-periodic E-region echoes observed with the Chung-Li VHF radar. Annales de Geophysique 23, 393-400.
[10] Chen, G., Wu, C., Zhao, Z., Zhong, D., Qi, H., Jin, H. (2015a), Daytime E region field-aligned irregularities observed during a solar eclipse. J. Geophys. Res. Space Phys. 119 (12), 10633-10640.
[11] Chimonas, G., Axford, W.I. (1968), Vertical movement of temperate-zone spo- radic E layers. J.Geophys.Res.73(1),111-117.
[12] Chu, Y.H., Shan-Ren Kuo, Chien-Ya Wang, Hsien-Chien Huang (1996), Spec- tral Behavior of VHF Backscatter From Ionospheric Sporadic E Irregularities in the Equatorial Anomaly Crest Zone, TAO, Vol. 7, No. 3, 361-373.
[13] Chu, Y.H., Wang, C.Y. (1997), Interferometry observations of three- dimensional spatial structures of sporadic E irregularities using the Chung-Li VHF radar. Radio Science 32, 817-832.
[14] Chu, Y.H., Wang, C.Y. (1999), Interferometry investigations of VHF backscat- ter from plasma irregularity patches in the nighttime E region using the Chung- Li radar. Journal of Geophysical Research 104, 2621-2631.
[15] Chu, Y.-H., and C.-Y. Wang (2002), Plasma structures of 3 meter type 1 and type 2 irregularities in nighttime midlatitude sporadic E region, J. Geophys. Res., 107(A12), 1447, doi:10.1029/2002JA009318.
[16] Chu, Y.-H., and C.-Y. Wang (2003), Radial velocity and doppler spectral width of echoes from field-aligned irregularities localized in the sporadic E region, J. Geophys. Res., 108(A7), 1282, doi:10.1029/2002JA009661.
[17] Chu, Y.H., Wang, C.Y. (2005), An evidence of beam broadening effect domi- nating Doppler spectra of field-aligned irregularities in sporadic E region made with the Chung-Li radar. Journal of Geophysical Research 110, A09305.
[18] Chu, Y. H., C. Y. Wang, K. F. Yang (2007), Plasma structures responsible for sporadic E region quasi-periodic echoes, Journal of Atmospheric and Solar- Terrestrial Physics, 69, 537-551.
[19] Chu, Y. H., C. Y.Wang, K. H. Wu, K. T. Chen, K. J. Tzeng, C. L. Su, W. Feng, and J. M. C. Plane (2014), Morphology of sporadic E layer retrieved from COS- MIC GPS radio occultation measurements: Wind shear theory examination, J. Geophys. Res. Space Physics, 119, 2117-2136, doi:10.1002/2013JA019437.
[20] Chu, Y.-H., and K.-F. Yang (2009), Reconstruction of spatial structure of thin layer in sporadic E region by using VHF coherent scatter radar, Radio Sci., 44, RS5003, doi:10.1029/2008RS003911.
[21] Chu, Y. H., K. F. Yang, C. Y. Wang, and C. L. Su (2013), Meridional electric fields in layer-type and clump-type plasma structures in midlatitude sporadic E region: Observations and plausible mechanisms, J. Geophys. Res. Space Physics, 118, 1243-1254, doi:10.1002/jgra.50191.
[22] Chu, Y. H., P. S. Brahmanandam, C. Y. Wang, C. L. Su, and R. M. Kuong (2011), Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT3/COSMIC satellites. J. Atmos. Sol.- Terr. Phys., 73, 883-894, doi: 10.1016/j.jastp.2010.10.004.
[23] Cosgrove, R. B., and R. T. Tsunoda (2002), A direction-dependent instability of sporadic- E layers in the nighttime midlatitude ionosphere, Geophys. Res. Lett., 29(18), 1864, doi:10.1029/2002GL014669.
[24] Cosgrove, R.B., Tsunoda, R.T. (2003), Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. Journal of Geophysical Research 108 (A7), 1283.
[25] Drob, D. P., et al. (2015), An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2, 301-319, doi:10.1002/2014EA000089.
[26] Dunkerton, T. J. (1984), Inertia-gravity waves in the stratosphere, J. Atmos. Sci., 41, 3396-3404.
[27] Farley, D.T. (1985), Theory of equatorial electrojet plasma waves: new devel- opments and current status. Journal of Atmospheric and Terrestrial Physics 47, 729-744.
[28] Farley, D.T., Ierkie, H.M., Fejer, B.G. (1981), Radar interferometry: a new technique for studying plasma turbulence in the ionosphere. Journal of Geo- physical Research 86, 1467-1472.
[29] Fejer, B.G., Kelley, M.C. (1980), Ionospheric irregularities. Rev. Geophys. 18, 401-454.
[30] Fejer, B. G., J. Providakes, and D. T. Farley (1984), Theory of plasma waves in the auroral E region, J. Geophys. Res., 89, 7487-7494, doi:10.1029/JA089iA09p07487.
[31] Ferguson, E. E. and F. C. Fehsenfeld (1968), Some aspect of the metal ion chemistry of the earth’s atmosphere, J. Geophys. Res., space physics, Vol. 73, No. 19.
[32] Fong, W., X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald (2014), Winter temperature tides from 30 to 110 km at McMurdo (77.8oS, 166.7oE), Antarctica: Lidar observa- tions and comparisons with WAM, J. Geophys. Res. Atmos., 119, 2846-2863, doi:10.1002/ 2013JD020784.
[33] Fritts, D.C., Abdu, M.A., Batista, B.R., et al. (2009), Overview and summary of the Spread F Experiment (SpreadFEx). Ann. Geophys. 27, 2141-2155.
[34] Fritts, D. C. and Alexander, M. J. (2003), Gravity wave dynam- ics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi.org/10.1029/2001RG000106.
[35] Fritts, D. C., C. Bizon, J. A. Werne, and C. K. Meyer (2003), Layering ac- companying turbulence generation due to shear instability and gravity wave breaking, J. Geophys. Res., 108(D8), 8452 doi:10.1029/2002JD002406.
[36] Fritts, D. C., J. R. Isler, and O. Andreassen (1994), Gravity wave breaking in two and three dimensions: 1. Three-dimensional evolution and instability structure, J. Geophys. Res., 99, 8109-8123.
[37] Fritts, D. C., and P. K. Rastogi (1985), Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations, Radio Sci., 20, 1247-1277.
[38] Fukao, S., M. C. Kelley, T. Shirakawa, T. Takami, M. Yamamoto, T. Tsuda, and S. Kato (1991), Turbulent upwelling of the midlatitude iono- sphere: 1. Observational results by MU radar, J. Geophys. Res., 96, 3725-3746, doi:10.1029/90JA02253.
[39] Gavrilov, N. M., S. Fukao, T. Nakamura, T. Tsuda, M. D. Yamanaka, and
M. Yamamoto (1996), Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere, 1, Method and general characteristics, J. Geophys. Res., 101, 29,511-29,521.
[40] Gerd W.prlss (2011), physics of the earth’s space environment an introduction.
[41] Geyer, Michael (2016-6), Earth-Referenced Aircraft Navigation and Surveillance Analysis. Project Memorandum, DOT-VNTSC-FAA-16-12. https://rosap.ntl.bts.gov/view/dot/12301.
[42] Gossard, E. E., and W. H. Hooke (1975), Waves in the Atmosphere, 456 pp., Elsevier, New York.
[43] Guest, F. M., M. J. Reeder, C. J. Marks, and D. J. Karoly (2000), Inertia- gravity waves observed in the lower stratosphere over Macquarie Island, J. Atmos. Sci., 57, 737-752.
[44] Gurevich, A. V., N. D. Borisov, and K. P. Zybin (1997), Ionospheric turbulence induced in the lower part of the E region by the turbulence of the neutral atmosphere, J. Geophys. Res., 102, 379-388, doi:10.1029/96JA00163.
[45] Haldoupis, C. (2012), Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. SpaceSci.Rev.168, 441-461.
[46] Haldoupis, C., D. Pancheva, W. Singer, C. Meek, J. MacDougall (2007), An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res. 112, A06315, doi:10.1029/2007JA012322.
[47] Hargreaves, J. K. (1992), The solar-terrestrial environment: An introduction to geospace-the science of the terrestrial upper atmosphere, ionosphere and magnetosphere, Cambridge University Press.
[48] Hedin, A. E. (1991), Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172.
[49] Heelis R. A. (2004), Electrodynamics in the low and middle latitude iono- sphere: a tutorial, J. Atmos. Sol. Terr. Phys., Vol. 66, pp. 825-838.
[50] Huang, K. M., A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Y. Gong, Q. Gan,
Y. H. Zhang, and R. Wang (2017), Simultaneous upward and downward propa- gating inertia-gravity waves in the MLT observed at Andes Lidar Observatory, J. Geophys. Res. Atmos., 122, 2812-2830, doi:10.1002/2016JD026178.
[51] Huang, C.S., and Kelley, M.C. (1996), Numerical simulations of gravity wave modulation of midlatitude sporadic E layers. J. Geophys. Res., 101, 24533- 24543.
[52] Hysell, D. L., and J. D. Burcham (2000), The 30-MHz radar interferometer studies of midlatitude E region irregularities, J. Geophys. Res., 105, 12,797 - 12,812.
[53] Hysell, D. L., M. Yamamoto, and S. Fukao (2002), Imaging radar observations and theory of type I and type II quasi-periodic echoes, J. Geophys. Res., 107(A11), 1360, doi:10.1029/2002JA009292.
[54] JIN Hidekatsu (2009), Ionospheric Dynamo Process, Journal of the National Institute of Information and Communications Technology, Vol.56 Nos.1-4.
[55] Kelley, M. C. (1989), The Earth’s Ionosphere, Academic, San Diego, Califor- nia.
[56] Kelley, Michael C.(2009), The earth’s ionosphere: plasma physics and electro- dynamics, Second Edition, Elsevier Inc., UK.
[57] Kintner, P.M., Brent M. Ledvina (2005), The ionosphere, radio navigation, and global navigation satellite systems, Advances in Space Research, 35, 788- 811.
[58] Koehler,J.A., C.Haldoupis, K.Schlegel,and V.Virvilis (1997), Simultaneous ob- servations of E region coherent radar echoes at 2-m and 6-m radio wavelengths at midlatitude, J.Geophys.Res., 102, 17,255-17,265.
[59] Kopp, E. (1997), On the abundance of metal ions in the lower ionosphere, J. Geophys. Res., 102, 9667-9674.
[60] Larsen, M. F.(2000), A shear instability seeding mechanism for quasiperiodic radar echoes, J. Geophys. Res., vol. 105, no. A11, pp. 24931-24940,
[61] LeLong, M.-P., and T. J. Dunkerton (1998b), Inertia-gravity wave breaking in three dimensions, 2, Convectively unstable waves, J. Atmos. Sci., 55, 2489- 2501.
[62] Li, J., Collins, R., Lu, X., and Williams, B. (2021). Lidar observations of in- stability and estimates of vertical eddy diffusivity induced by gravity wave breaking in the Arctic mesosphere. Journal of Geophysical Research: Atmo- spheres, 126, e2020JD033450.
[63] Li, T., C.-Y. She, H.-L. Liu, T. Leblanc, and I. S. McDermid (2007), Sodium lidar-observed strong inertia-gravity wave activities in the mesopause region over Fort Collins, Colorado (41oN, 105oW), J. Geophys. Res., 112, D22104, doi:10.1029/2007JD008681.
[64] Li, Z., L. Liu, W. Wan, and B. Ning (2011), Neutral wind.driven gradient drift instability in the low-latitude daytime E region, J. Geophys. Res., 116, A03314, doi:10.1029/2010JA016166.
[65] Li, T., T. Leblanc, I. S. McDermid, D. L. Wu, X. Dou, and S. Wang (2010), Seasonal and inter-annual variability of gravity wave activity revealed by long- term lidar observations over Mauna Loa Observatory, Hawaii, J. Geophys. Res., 115, D13103, doi:10.1029/2009JD013586.
[66] Lin, T.-H., Y.-H. Chu, C.-L. Su, and K.-F. Yang (2019), Radar phase offset estimate using ionospheric field-aligned irregularities and aircraft. Terr. Atmos. Ocean. Sci., 30, 803-820, doi: 10.3319/TAO.2019.05.09.01.
[67] Lindzen, R. S. (1981), Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707- 9714.
[68] Liu, A. Z., R. G. Roble, J. H. Hecht, M. F. Larsen, and C. S. Gardner (2004), Unstable layers in the mesopause region observed with Na lidar during the Turbulent Oxygen Mixing Experiment (TOMEX) campaign, J. Geophys. Res., 109, D02S02, doi:10.1029/2002JD003056.
[69] Liu, H. L., P. B. Hays, and R. G. Roble (1999), A numerical study of gravity wave breaking and impacts on turbulence and mean state, J. Atmos. Sci., 56, 2152- 2177.
[70] MacDougall, J.W., J.M. Plane, P.T. Jayachandran (2000), Polar cap Sporadic E: part 2, modeling. J. Atmos. Sol.-Terr. Phys. 62, 1169-1176.
[71] Mahafza, Bassem R. (2000), Radar Systems Analysis and Design Using MAT- LAB, Chapman and Hall/CRC, Boca Raton, FL.
[72] Mahafza, Bassem R. (2009), Radar Systems Analysis and Design Using MAT- LAB, Chapman and Hall/CRC, New York.
[73] Mahafza, Bassem R. (2013), Radar Systems Analysis and Design Using MAT- LAB, Third Edition, Chapman and Hall/CRC, New York.
[74] Mark A. Richards, James A. Scheer, William A. Holm, (2010), Principles of modern radar. Vol. I: Basic Principles,SciTech.
[75] Mathews, J.D., Machuga, D.W., Zhou, Q. (2001), Evidence for electrodynamic linkages between spread-F, ionrain, the intermediate layer, and sporadic E: re- sults from observations and simulations.J.Atmos.Sol.-Terr.Phys.63,1529-1543.
[76] Meriwether, J. W., and Gardner, C. S. (2000), A review of the mesosphere inversion layer phenomenon, J. Geophys. Res., 105, 12,405- 12,416.
[77] Merrill I. Skolnik (1990), Radar handbook, Second Edition, McGraw-Hill, United States of America.
[78] Morse, F.A., Edgar, B.C., Koons, H.C., Rice, C.J., Heikkila, W.J., Hoffman, J.H., et al. (1977), Equion, an equatorial ionospheric irregularity experiment.
J. Geophys. Res. Atmos. 82 (4), 578-592.
[79] Murakoa, Y., T. Sugiyama, K. Kawahira, T. Sato, and T. Tsuda (1988), Cause of a monochromatic inertia-gravity wave breaking observed by the Mu radar, Geophys. Res. Lett., 15, 1349-1352, doi:10.1029/GL015i012p01349.
[80] Muraoka, Y., K. Kawahira, T. Sato, T. Tsuda, and S. Fukao (1987), Character- istics of mesospheric internal gravity waves observed by MU radar, Geophys. Res. Lett., 14, 1154-1157, doi:10.1029/GL014i011p01154.
[81] Murphy, D. J., S. P. Alexander, A. R. Klekociuk, P. T. Love, and R. A. Vincent (2014), Radiosonde observations of gravity waves in the lower strato- sphere over Davis, Antarctica, J. Geophys. Res. Atmos., 119, 11,973-11,996, doi:10.1002/2014JD022448.
[82] Nappo, C. J. (2013), An introduction to atmospheric gravity waves, second edition, USA.
[83] Nastrom, G. D., and F. D. Eaton (2006), Quasi-monochromatic inertia gravity waves in the lower stratosphere from MST radar observations, J. Geophys. Res., 111, D19103, doi:10.1029/2006JD007335.
[84] Nicolls, M. J., R. H. Varney, S. L. Vadas, P. A. Stamus, C. J. Heinselman, R.
B. Cosgrove, and M. C. Kelley (2010), Influence of an inertia-gravity wave on mesospheric dynamics: A case study with the Poker Flat Incoherent Scatter Radar, J. Geophys. Res., 115, D00N02, doi:10.1029/2010JD014042.
[85] Nygren, T., L. Jalonen, J. Oksman, and T. Turunen (1984), The role of electric field and neutral wind direction in the formation sporadic E layers, J. Atmos. Terr. Phys., 46,373.
[86] Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., Fukao, S. (2007), Simultaneous observations of nighttime medium-scale traveling iono- spheric disturbances and E region field-aligned irregularities at midlatitude.
J.Geophys.Res. 112, A06317, doi.org/10.1029/2005JA011548.
[87] Providakes, J., D.T.Farley, B.G.Fejer, J. Sahr, W.E. Swartz, I. Hxggstrbm, A. Hedberg, and J. A. Nordling (1988), Observations of aurora1 E-region plasma waves and electron beating with EISCAT and a VHF radar interferometer,
Journal of Atmospheric and Terrestrrial Physics, 50, 339-356
[88] Richmond, A. D. (October 14, 2016), Ionospheric Electrodynamics.
[89] Riggin, D., Swartz, W.E., Providakes, J., Farly, D.T. (1986), Radar studies of long-wavelength waves associated with midlatitude sporadic E layers. Journal of Geophysical Research 91, 8011-8024.
[90] Roddy, P. A., G. D. Earle, C. M. Swenson, C. G. Carlson, and T. W. Bul- lett (2004), Relative concentrations of molecular and metallic ions in midlat- itude intermediate and sporadic E layers, Geophys. Res. Lett., 31, L19807, doi:10.1029/2004GL020604.
[91] Sahr, J.D., Farley, D.T., Swartz, W.E., Providakes, J.F. (1991), The altitude of type 3 auroral irregularities: radar interferometer observations and impli- cations. Journal of Geophysical Research 96, 17,805.
[92] Saito, S., M. Yamamoto, H. Hashiguchi, A. Maegawa, and A. Saito (2007), Observational evidence of coupling between quasiperiodic echoes and medi- umscale traveling ionospheric disturbances, Ann. Geophys., 25, 2185-2194.
[93] Serafimovich, A., P. Hoffmann, D. Peters, and V. Lehmann (2005), Investi- gation of inertia-gravity waves in the upper troposphere/lower stratosphere over Northern Germany observed with collocated VHF/UHF radars, Atmos. Chem. Phys., 5, 295-310.
[94] Shalimov, S., C. Haldoupis, and K. Schlegel (1998), Large polarization electric fields associated with midlatitude sporadic E, J. Geophys. Res., 103, 11,617 - 11,625.
[95] Shibuya, R. and Sato, K. (2019), A study of the dynamical characteristics of inertiagravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model, Atmos. Chem. Phys., 19, 3395-3415, doi:10.5194/acp-19-3395-2019.
[96] Shinagawa, H., Y. Miyoshi, H. Jin, and H. Fujiwara (2017), Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA, J. Geophys. Res. Space Physics, 122, 4450-4465, doi:10.1002/2016JA023778.
[97] Shoichiro Fukao and Kyosuke Hamazu (2014), Radar for Meteorological and Atmospheric Observations. Springer Tokyo Heidelberg New York Dordrecht London, ISBN 978-4-431-54333-6, DOI 10.1007/978-4-431-54334-3.
[98] Snively, J. B., and V. P. Pasko (2003), Breaking of thunderstormgenerated gravity wave as a source of short-period ducted waves in mesopause altitudes, Geophys. Res. Lett., 30(24), 2254, doi:10.1029/2003GL018436.
[99] Sudan, R.N. (1983), Unified theory of type-I and type-II irregularities in the equatorial electrojet. Journal of Geophysical Research 88, 4853-4860.
[100] Tanaka, T., Venkateswaran, S.V. (1982), Characteristics of fieldaligned E- region irregularities over Ioka (36o), Japan, I. Journal of Atmospheric Terres- trial Physics 44, 381-394.
[101] Tsunoda, R.T. (2008), On blanketing sporadic E and polarization ef- fects near the equatorial electrojet, J. Geophys. Res., 113, A09304, doi:10.1029/2008JA013158.
[102] Wang, C. Y. and Y. H. Chu (2001), Interferometry investigations of blob- like sporadic E plasma irregularity using the ChungLi VHF radar. J. Atmos. Sol.-Terr. Phys., 63, 123-133, doi: 10.1016/S1364-6826(00)00141-3.
[103] Wang, C. Y., Y. H. Chu, C. L. Su, R.-M. Kuong, H.-C. Chen, and
K. F. Yang (2011), Statistical investigations of layer-type and clump-type plasma structures of 3-m field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF radar, J. Geophys. Res., 116, A12311, doi:10.1029/2011JA016696.
[104] Whitehead, J. D. (1989), Recent work on mid-latitude and equatorial sporadic- E, J. Atmos. Terr. Phys., 51, 401-424.
[105] William L. Melvin and James A. Scheer (2013), Principles of Modern Radar Vol. II: Advanced Techniques, SciTech.
[106] William L. Melvin and James A. Scheer (2014), Principles of Modern Radar Vol. III: Radar Applications,SciTech.
[107] Williams, B. P., D. C. Fritts, L. Wang, C. Y. She, J. D. Vance, F. J. Schmidlin,
R. A. Goldberg, A. Mullemann, and F.-J. Lubken (2004), Gravity waves in the arctic mesosphere during the MaCWAVE/MIDAS summer rocket program, Geophys. Res. Lett., 31, L24S05, doi:10.1029/2004GL020049.
[108] Wing, R.; Martic, M.; Triplett, C.;Hauchecorne, A.; Porteneuve, J.; Keckhut, P.; Courcoux, Y.; Yung, L.; Retailleau, P.; Cocuron, D., Gravity Wave Break- ing Associated with Mesospheric Inversion Layers as Measured by the Ship- Borne BEM Monge Lidar and ICON-MIGHT. Atmosphere 2021, 12, 1386. https://doi.org/10.3390/atmos12111386.
[109] Wu, D. L., Ao, C. O., Hajj, G. A., de la Torre Juarez, M., and Mannucci,
A. J. (2005), Sporadic E morphology from GPS-CHAMP radio occultation, J. Geophys. Res., 110, A01 306, doi:10.1029/2004JA010701.
[110] Yamamoto, M., Fukao, S., Woodman, R.F., Ogawa, T., et al. (1991), Mid- latitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res. 96 (A9), 15943-15949.
[111] Yamamoto, M., Komoda, N., Fukao, S., Tsunoda, R.T., Ogawa, T., Tsuda,
T. (1994), Spatial structure of the E-region field aligned irregularities revealed by the MU radar. Radio Science 29, 337-347.
[112] Yamamoto, M., T. Tsuda, S. Kato, T. Sato, and S. Fukao (1987), A sat- urated internal gravity waves in the mesosphere observed by the middle and upper atmosphere radar, J. Geophys. Res., 92(D10), 11,993-11,999, doi:10.1029/JD092iD10p11993.
[113] Yokoyama, T., M. Yamamoto, and S. Fukao (2003), Computer simulation of polarization electric fields as a source of midlatitude field-aligned irregularities, J. Geophys. Res., 108(A2), 1054, doi:10.1029/ 2002JA009513.
[114] Yuan, T., P.-D. Pautet, Y. Zhao, X. Cai, N. R. Criddle, M. J. Taylor, and
W. R. Pendleton Jr. (2014b), Coordinated investigation of midlatitude up- per mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah, J. Geophys Res. Atmos., 119, 3756-3769, doi:10.1002/2013JD020586.
[115] Yuan, T., Stevens, M. H., Englert, C. R., and Immel, T. J. (2021). Temperature tides across the mid-latitude summer turbopause measured by a sodium lidar and MIGHTI/ICON. Journal of Geophysical Research: Atmospheres, 126, e2021JD035321.
[116] Zolesi, B., Lj.R. Cander (2006), Effects of the upper atmosphere on terrestrial and Earth-space communications: Final results of the EU COST 271 Action, Advances in Space Research, 37, 1223-1228. |